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Abstract 
Natural selection pressures have resulted in the physical resources of the brain being organized into 
modules that perform different general types of information processes. Each module is made up of 
submodules performing different information processes of the general type, and each submodule is made 
up of yet more detailed modules. At the highest level, modules correspond with major anatomical structures 
like the cortex, hippocampus, basal ganglia, cerebellum etc.  In the cortex, for example, the more detailed 
modules include areas, columns, neurons, and a series of neuron substructures down to molecules. Any one 
memory or learning phenomenon requires many information processes  performed by many different 
anatomical structures. However, the modular structure makes it possible to describe a memory phenomenon 
at a high (psychological) level in terms of the information processes performed by the major anatomical 
structures. The same phenomenon can be described at each level in a hierarchy of more detailed 
descriptions, in terms of the information processes performed by anatomical substructures. At higher levels, 
descriptions are approximate but can be mapped to more detailed, more precise descriptions as required 
down to neuron levels and below. The total information content of a high level description is small enough 
that it can be fully understood. Small parts of a high level phenomenon, when described at a more detailed 
level, also have a small enough information content to be understood. The information processes and 
resultant hierarchy of descriptions therefore make it possible to understand cognitive phenomena like 
episodic, semantic or working memory in terms of neuron processes via a series of intermediate levels of 
description. 
 
 
1 Introduction 

Understanding how the human brain supports higher cognitive phenomena like 
memory and learning cannot depend on models at the psychological level and other 
models at the physiological level with no clear connection between them. A hierarchy of 
descriptions of the same phenomenon from psychological to physiological is needed, 
with clear mapping between the levels (Coward and Sun 2004; Sun et al. 2005). At any 
one level, it must be possible to describe how at each point in time the observed situation 
causes the situation at the next point in time, in other words, descriptions must be causal. 

The mapping between levels must be well understood. As in the physical sciences, 
the higher levels will be more approximate, but there must be clear understanding of 
when a more detailed level is necessary to achieve a given degree of quantitative 
accuracy (Coward and Sun 2007). 

Such a hierarchy of causal descriptions requires consistent information models for 
components at each level of description. The information models make it possible to map 
precisely from a causal description on one level of detail to descriptions on other levels of 
detail. 

For memory and learning, at the highest level a causal description in psychological 
terms is required. At a more detailed level, a causal description in terms of major 
anatomical structures, such as the cortex, thalamus, basal ganglia, cerebellum, etc., is 
needed that precisely maps into the psychological description. At an even more detailed 
level, a description in terms of components of the major anatomical structures (such as 
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cortical columns and subcortical nuclei) must map into the higher level descriptions. At 
an even more detailed level, a causal description in terms of neuron algorithms must map 
into higher anatomical descriptions. 

Experience with the design of very complex electronic real-time systems indicates 
that a number of practical considerations place severe constraints on the architectures of 
such systems (Coward 2001). These practical considerations include resource limitations 
and the need to make changes and additions to some features without undesirable side 
effects on other features. “System architecture” means the way in which the information 
handling resources required to support system features are separated into subsystems. 
Each subsystem is individually customized for efficient performance of a different type 
of information recording, processing and/or communication, and there are limits on the 
type and degree of information exchange between subsystems. The separation between 
memory and processing and the sequential execution of information processes, often 
known as the von Neumann architecture, are important aspects of these architectural 
constraints. 

Although there are minimal direct resemblances between such electronic systems and 
brains, natural selection results in a number of practical considerations that influence 
brain architectures in analogous ways (Coward 2001, 2005). If the brains of two species 
can learn the same set of behaviours, but the brain architecture of one of these species 
requires fewer resources, then the species with the more efficient architecture will have a 
significant natural selection advantage. If one species can learn new behaviours with less 
interference to previously learned behaviours than another species, then again the more 
effective species will have natural selection advantages. 

It can be demonstrated theoretically (Coward 2001) that these and other practical 
considerations tend to constrain the architecture of any sufficiently complex learning 
system into some specific architectural forms, analogous with but qualitatively different 
from the von Neumann architecture. There is considerable evidence (Coward 2005) that 
the mammal brain has been constrained into these forms, known as the recommendation 
architecture. 

As a result of these architectural forms, different general information models can be 
assigned to different major anatomical structures including the cortex, hippocampal 
system, thalamus, basal ganglia, amygdala, hypothalamus and cerebellum. More specific 
information models that support the general models can be assigned to substructures of 
these structures, such as areas and columns in the cortex; CA fields, dentate gyrus and 
associated cortices in the hippocampal system; and striatum, substantia nigra, globus 
pallidus, nucleus accumbens, etc. in the basal ganglia. Yet more specific supporting 
information models can be assigned to neurons, synapses and ion channels. 

This hierarchy of consistent information models is the foundation for modelling 
memory phenomena consistently on a psychological level, on the level of major 
anatomical structures, on the level of more detailed structures and on the level of neuron 
physiology. Cognitive phenomena such as retrieval of episodic memories can be mapped 
into sequences of activities in major anatomical structures that result in the memory 
retrieval, an activity within one such structure (such as the cortex) can be mapped into 
sequences of activities in substructures of that structure (such as cortical columns), and an 
activity in a substructure can be mapped into a sequence of activities at a neuron level. If 
necessary, a neuron activity can be mapped into a sequence of chemical activities at the 



 

  3 

synapse level, etc. The end result is understanding of the psychological phenomenon in 
terms of neurons. 

 
2 The Recommendation Architecture Model 

The information models for the major subsystems in the recommendation 
architecture are illustrated in figure 1, along with the anatomical structures of the 
mammal brain that correspond with each subsystem (Coward 1990, 2001, 2005, 2009a; 
Coward and Gedeon 2009). The primary separation is between a subsystem called 
clustering (corresponding with the cortex) that organizes the system resources used to 
define and detect conditions within the information available to the system and a 
subsystem called competition (corresponding with the basal ganglia and thalamus) that 
interprets each current condition detection as a set of recommendations in favour of many 
different behaviours, each with an individual weight, and implements the behaviour with 
the largest total weight across all current condition detections. Reward feedback results in 
adjustments to the weights that recommended recently implemented behaviours. 
However, such reward feedback cannot change condition definitions because such 
changes would interfere with all the other behaviours recommended by the same 
condition. 

Clustering is organized as a modular hierarchy, with more detailed modules detecting 
sets of very similar conditions and higher level modules made up of groups of more 
detailed modules detecting larger sets of somewhat less similar conditions. The primary 
driving force that generates this hierarchy is the need to share the resources used to detect 
similar conditions. Individual modules detect conditions relevant to many different 
behaviours, and module outputs therefore have very complex behavioural meanings. 

Competition is organized as a component hierarchy. The use of reward feedback 
within competition means that component outputs can only have very simple behavioural 
meanings, and components must correspond with one individual behaviour or with one 
general type of behaviour. 

The information available to the cortex includes sensory inputs and inputs indicating 
internal activity of the brain (including the cortex). A condition is defined by a set of 
inputs and a specified state for each input. A condition is detected if a high proportion of 
the inputs that define it are in their specified state. 
Two conditions are similar if there is significant overlap in the information defining them 
and/or they often tend to be present at the same time (i.e. in the same system input states). 
This definition of similarity implies that two similar conditions will tend to have similar 
behavioural implications. Rather than connecting every individual condition detection to 
the component hierarchy, resource economy can be achieved by organizing conditions 
into groups on the basis of similarity. The conditions making up the group are recorded in 
a module, and the module generates an output to the component hierarchy only if a 
significant subset of the conditions in the group is present. If necessary, sufficiently 
different subsets can be indicated by different outputs. The group of similar conditions 
defines the receptive field of the module. 
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Figure 1 The recommendation architecture mapped into mammal brain anatomy. The primary separation is 
between a modular hierarchy (called clustering and corresponding with the cortex) that defines and detects 
conditions in the information available to the brain, and a component hierarchy (called competition and 
corresponding with the thalamus and basal ganglia) that at each point in time receives some of the 
conditions detected by clustering, interprets each condition as a set of recommendations in favour of a 
range of different behaviours, each with an individual weight, and implements the most strongly 
recommended behaviour. Most conditions must be defined heuristically, and within clustering there is a 
subsystem (corresponding with the hippocampal system) that determines when and where new conditions 
will be recorded. Positive or negative reward feedback following a behaviour can adjust the recently active 
weights that recommended the behaviour, but cannot change condition definitions without severe 
interference with all the other behaviours recommended by the same conditions. Detections of conditions 
indicating that a reward is appropriate are received by the nucleus accumbens, which applies changes to 
weights in the basal ganglia. Most behaviours are implemented by release of information flows into, out of 
or within clustering, and a separate subsystem (corresponding with the thalamus) is required to efficiently 
manage such information releases. Conditions indicating the appropriateness of general types of behaviours 
(e.g. aggressive, fearful, food seeking, etc.) are provided to structures (corresponding with the amygdala 
and hypothalamus) that modulate the relative probability of such behaviour types. Frequently required 
sequences of behaviours that need to be executed rapidly and accurately are recorded and executed by the 
cerebellum. 
 

Conditions (and receptive fields) can be defined on many different levels of 
complexity, where the complexity of a condition is the total number of raw system inputs 
(including all duplicates) that contribute to the condition, either directly or via 
intermediate conditions. Receptive fields on different levels of complexity will tend to be 
effective in discriminating between different types of circumstances with different types 
of behavioural implications. For example, relatively simple receptive fields will be able 
to discriminate between different visual features (e.g. tail, wing and tooth). More 
complex receptive fields will be able to discriminate between different categories of 
visual object (e.g. cat, dog and bird). Yet more complex receptive fields will be able to 
discriminate between different types of groups of visual objects (e.g. cat chased by dog, 
cat confronting dog and cat avoiding dog). Simple receptive fields will be elements in the 
definitions of more complex receptive fields. 
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In a learning system, most conditions and receptive fields must be defined 
heuristically from system experience. Hence the information model for the cortex as a 
whole includes definition and detection of receptive fields at different levels of 
complexity within the information available to the brain. 

In the basal ganglia, high-level components correspond with general types of 
behaviour, more detailed components within a high level component correspond with 
more specific behaviours of the general type. A receptive field detection by the cortex is 
communicated to a large number of components in the basal ganglia. Each component 
interprets the detection as a recommendation in favour of its corresponding behaviour, 
with a weight that is different for each component. The information model for the basal 
ganglia is therefore interpretation of cortical receptive field detections as behavioural 
recommendations and implementation of the most strongly recommended behaviours. 

In general, a behaviour will be implemented by an information flow into, within or 
out of the cortex. There is therefore a requirement for a subsystem that provides 
coordinated management of all such information flows. This subsystem requires 
information on current cortical activity and information on currently selected behaviours. 
In the mammal brain, the thalamus corresponds with this subsystem. Thus the thalamus 
receives information from the cortex and gates information flows into the cortex 
(attention behaviours), out of the cortex (e.g. from the motor cortex to drive motor 
behaviours) and within the cortex (e.g. various cognitive behaviours). 

If a behaviour is implemented, it will have consequences. If these consequences are 
good, the probability of the behaviour being selected in the future can be increased, if the 
consequences are bad, the probability should be decreased. A reward subsystem is 
therefore required that receives indications of positive and negative consequences of 
behaviours and changes recently active weights that led to the selection of recent 
behaviours. The nucleus accumbens within the basal ganglia corresponds with this 
subsystem. Because components in the component hierarchy correspond with behaviours, 
appropriate targetting of reward feedback is straightforward. 

Indications of the positive or negative consequences of behaviours will often be 
receptive field detections by the cortex. For example, the anterior cingulate cortex detects 
receptive fields that correlate with the presence of error conditions (Kiehl et al. 2000). 
The anterior cingulate cortex projects to the nucleus accumbens (Devinsky et al. 1995), 
where such receptive field detections are interpreted as recommendations in favour of 
negative rewards. If the recommendations are accepted (i.e. if there is adequate total 
weight into the nucleus accumbens), then the recently accepted behavioural weights 
elsewhere in the basal ganglia will be weakened. 

Any one receptive field detection recommends a wide range of different behaviours, 
and reward feedback follows an individual behaviour. Hence changes to receptive field 
definitions as a result of reward feedback would damage the integrity of the 
recommendation weights in favour of all the other behaviours. In general, any major 
change to a receptive field will damage the integrity of its associated behavioural 
meanings. As a result, receptive field changes must be strongly constrained. To a first 
approximation, a receptive field can be expanded slightly by addition of similar 
conditions, but previously added conditions cannot be changed or deleted. One exception 
to this rule is that if a condition is added and does not occur again within a significant 
period of time, it can probably be removed again. Another exception is that if a receptive 
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field ceases to occur for some long period of time (perhaps because the source of its 
inputs has been damaged), it can probably be removed and its resources reassigned to 
another receptive field. 

An implication of this constraint on receptive field changes is that individual fields 
cannot be guided to correspond with unambiguous cognitive circumstances such as object 
categories. Any one receptive field may be detected within some instances of many 
different such object categories and will therefore have recommendation strengths in 
favour of behaviours appropriate to all of the categories (such as naming them). 
However, an array of such fields can be evolved so that it discriminates between such 
categories. In other words, the predominant recommendation strength across all the 
receptive fields detected within an instance of any category will be in favour of 
behaviours appropriate for that category, even though no one receptive field corresponds 
with any one category (Coward 2001, 2005). 

There is another important implication of the stability of receptive fields and their 
associated behavioural meanings. In response to an input state, a number of receptive 
fields will be detected, contributing their behavioural recommendation strengths. 
However, there are some potentially relevant recommendation strengths that are 
associated with receptive fields not actually being detected. For example, suppose there is 
a receptive field that is not currently being detected, but that has often been detected in 
the past when many of the currently detected receptive fields were also detected. Given 
this past consistency, there could be behavioural value in generating receptive field 
detections on the basis of frequent past simultaneous activity with currently detected 
receptive fields. Such value could be accessed by each receptive field also having 
recommendation strengths in favour of indirect activation of any receptive fields that 
have often been active in the past at the same time. Behavioural value could also exist for 
receptive field activations on the basis of recent simultaneous activity and also on the 
basis of simultaneous receptive field expansion. Furthermore, there could also be 
behavioural value in receptive field activations on the basis of past activity just after the 
activity of currently detected receptive fields, where the temporally correlated activity 
could be frequent, recent or receptive field expansion based. 

If unrestricted, such indirect activations would generate a huge amount of activity, 
and they must therefore be behaviours that compete with other behaviours for acceptance. 
These indirect activation mechanisms are the information basis for a wide range of 
memory phenomena. 

In order to achieve a high integrity behaviour, there must be an adequate range of 
recommendations available. To achieve an adequate range, there must be at least a 
minimum number of receptive field detections in response to every overall system input 
state. If this minimum is not reached, some receptive fields must expand in order to 
extend the range of available recommendations. However, to minimize changes to 
receptive fields, those requiring the least degree of expansion must be identified. 

There is therefore a requirement for a further major subsystem that determines 
whether receptive field expansions are required, and if so identifies the modules in which 
the least such expansion will be required and drives expansion in those modules. In the 
mammal brain, the hippocampal system corresponds with this resource management 
subsystem. The information model for the hippocampal system is therefore determination 
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of when and where in the cortex receptive field expansions are appropriate and driving 
the required expansions. 

There is an additional requirement to record frequently used sequences of behaviours 
to ensure their rapid and accurate execution whenever required. In the mammal brain, the 
cerebellum corresponds with this subsystem. 

There is a requirement for a subsystem that modulates the relative probabilities of 
different general types of behaviours. Such general types could include aggressive, 
fearful, food-seeking, etc. There are two ways in which relative probabilities could be 
affected. One is to change the relative arousal of components in the component hierarchy 
corresponding with the behaviour types. The other is to change the probability of 
recommendations of the general type being generated. To economize on resources, most 
receptive field detections must be able to recommend any type of behaviour. However, if 
there are substantial behavioural advantages in separate receptive field definitions at 
some levels of complexity for different behavioural types, the advantages might outweigh 
the resource costs. Hence there could be some modules within the cortex that tend to 
recommend one general type of behaviour, and temporarily broadening their receptive 
fields would increase the probability of such behaviours being selected. 

Finally, there are two dynamic considerations. Efficient use of receptive field 
detection resources requires that the same set of resources must be able to detect 
receptive fields at one level of complexity simultaneously within multiple different 
sensory circumstances, keeping the different detections separate until it is appropriate to 
combine them in a controlled fashion. For example, if two dogs are chasing a squirrel, 
receptive fields must be detected within each dog and also the squirrel. There must be a 
set of receptive fields at a level of complexity that is effective for discriminating between 
objects. Resource economy dictates that each object will result in receptive field 
detections which are subsets of the same set, generally with some overlap between the 
subsets. Once receptive fields have been detected within all the individual objects, the 
detections must be combined to detect more complex receptive fields that can 
discriminate between different types of groups of objects. The problem is that the sets of 
simpler receptive fields must be kept completely separate (e.g. one activated set of 
receptive fields must not correspond with the head of a dog on the body of a squirrel) but 
must all be active at the same time for them to be combined to detect the more complex 
receptive fields (two dogs chasing a squirrel). As will be discussed in more detail later, 
one role of the gamma band frequency in the EEG is to maintain a separation between 
receptive fields detected within different objects but using the same neural resources. 

The second dynamic consideration is that because there is behavioural value in 
indirect activation of receptive fields on the basis of activity shortly after currently active 
fields, there is an analogous requirement for simultaneous activity in the same resources 
corresponding with a sequence of points in time. This simultaneous activity is required so 
that the appropriate links supporting future indirect activations can be established. As 
discussed later, one role of the theta band frequency in the EEG is to maintain separation 
between receptive field detections corresponding with different points in time. 
 
3. Review of Experimental Data Literature 
Tulving (1984, 1985) and later Schacter and Tulving (1994) developed an approach to 
classifying memory and learning phenomena. They suggested there were three criteria 
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that could be used to identify a memory system in the brain, which was separate from 
other memory systems. These criteria are the existence of a group of memory tasks which 
have some common characteristics, the existence of a list of features different from the 
list for any other system and the existence of multiple dissociations between any two 
systems. A dissociation is a way in which a similar manipulation of tasks performed by 
different systems produces different effects on the performance. An important category of 
dissociations is observations of patients with brain damage that affects one type of 
memory and not another. 

On the basis of a wide range of evidence, Schacter and Tulving (1994) proposed that 
there are five independent memory systems: semantic memory; episodic memory; 
priming memory; procedural memory and working memory. Semantic memory is the 
memory for facts and the meaning of words, without recall of the context in which those 
facts or words were learned. Episodic memory is the memory for events, including 
autobiographical memory for events with personal involvement. Semantic and episodic 
memories are together known as declarative memory because they are consciously 
accessible and can be described verbally. Priming memory is the ability to make use of 
experiences in the recent past to enhance behaviour, even when there is no conscious 
awareness or memory of those experiences. Procedural memory is the ability to learn 
skills, including motor skills. Working memory is the ability to maintain direct access to 
multiple objects, so that information derived from the objects is immediately available to 
influence behaviour. 
 
3.1 Semantic Memory  
Semantic memory is defined as the ability to recall a wide range of organized information 
including facts and word meanings (Tulving 1972). The typical experimental test of 
semantic memory is category verification, where a subject is presented with paired 
category names and category (e.g. mammal, monkey or mammal and pigeon) and asked 
to identify if the pairing is correct. Identification speed is slightly slower for non-typical 
instances (e.g. mammal-bat) than for typical or incorrect pairings (Rips et al. 1973). 

Functional neuroimaging indicates that semantic knowledge is encoded in many 
different cortical areas, especially the posterior temporal and frontal cortices, with the 
areas activated during semantic memory tasks generally being those also active during 
sensory or motor processing (Martin 2007). However, damage to the most anterior 
portions of the temporal cortices results in general loss of semantic memory capabilities, 
although this area does not show strong activation during semantic memory tasks (Rogers 
et al. 2006). There appears to be no consistent evidence for cortical area specialization for 
semantic domain (e.g. natural or man-made objects) or category (e.g. animals, fruit, tools 
and vehicles) although there is animal specific activity in the left anterio-medial temporal 
pole and tool specific activity in the left posterior middle temporal gyrus which appears 
in a subset of experiments with lower statistical confidence (Devlin et al. 2002). 
 
3.2 Episodic Memory 
In the laboratory, episodic memory is measured by both recognition and recall 
experiments. In recognition experiments, subjects are shown a set of novel objects and 
later shown a mixture of further novel objects and objects from the earlier set and asked 
to identify objects seen before.With photographs, subjects have a remarkable high 
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capability to identify previously perceived objects (Standing et al. 1970). In recall 
experiments, subjects are asked to describe one past event. To trigger the recall, subjects 
are given a word (Robinson 1976) or group of words (Crovitz and Schiffman 1974). Such 
experiments are often used to measure the past time period for which episodic memory 
retrieval has been degraded and the degree of degradation (Kensinger et al. 2001). 327 

Observation of the severity of retrograde amnesia in amnesic patients with damage to 
their hippocampal system indicates graduations between semantic and episodic memory 
(Nadel and Moscovitch 1997). In such patients, the most severe amnesia is for personal 
autobiographic memories. Amnesia for personal information, public events and persons is 
less severe, and amnesia for words and general facts is often minimal. 

Functional neuroimaging of the brain during episodic memory recall indicates that 
there is strong activity in the prefrontal cortex during episodic recall (Fletcher et al. 1997) 
and also in visual and visual association areas (Addis et al. 2007). There is somewhat 
weaker activity in the hippocampal system (Fletcher et al. 1997). Strong cerebellar 
activity is observed during episodic memory retrieval (Fliessbach et al. 2007). 
 
3.3 Procedural Memory 
Experimental tests of procedural memory are generally confined to simple learning tasks 
and are focussed on clarifying the distinction between procedural and other types of 
memory, in particular declarative memory (meaning both semantic and episodic). Typical 
investigations investigate the ability of patients who have lost the ability to create new 
semantic and episodic memories to learn simple procedural skills. For example, a wide 
range of such amnesic patients showed the ability to learn to read words reflected in a 
mirror at the same rate as normal controls and retain the skill for at least 3 months, 
despite failing to recall any familiarity with the task at the start of each session (Cohen 
and Squire 1981). 

For more complex skills, declarative knowledge speeds up the learning process 
(Mathews et al. 1989; Sun et al. 1996), and declarative memory is required for high levels 
of procedural skill performance (Mathews et al. 1989). However, there can be 
inconsistencies between procedural and declarative knowledge.When highly skilled 
subjects describe their skill, the descriptions often correspond with beginner methods 
rather than actual methods, and generating a verbal description can result in reversion to 
the less effective beginner method (Bainbridge 1977; Berry 1987). 

There is a range of evidence derived from the cognitive deficits associated with 
degeneration of the basal ganglia indicating that this structure plays an important role in 
procedural learning. The symptoms of Parkinson’s disease include difficulty with 
voluntary movement and with initiation of movement and in general slowness of 
movement. The observed physical deficit (Jankovic 2008) is degeneration of 
dopaminergic neurons in the substantia nigra compacta (SNc) nucleus of the basal 
ganglia. The major symptom of Huntingdon’s disease is the intrusion of irregular, 
unpredictable, purposeless, rapid movements that flow randomly from one body part to 
another (Berardelli et al. 1999). The observed physical deficit is loss of striatal cells that 
project into the indirect pathway (Starr et al. 2008). 

In addition, the cerebellum plays an important role in procedural learning (Torriero 
et al. 2007), although it also plays a role in a wide range of higher cognitive processes 
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(Leiner et al. 1993) including semantic (Devlin et al. 2002), episodic and working 
memory (Cabeza et al. 2002). 
 
3.4 Working Memory 
Working memory refers to the number of different objects that can be maintained active 
in the brain at the same time. A typical working memory experiment is list recall. 
Subjects are shown a sequence of objects and immediately afterwards asked to list all the 
objects in any order. Normal subjects can fully recall sequences of seven (plus or minus 
two) random digits, but only four or five random words or letters (McCarthy and 
Warrington 1990). Miller (1956) suggested that the limit of seven plus or minus two is a 
fundamental information processing limit. Cowan (2000) argued that seven is an 
overestimate because subjects were able to rehearse and/or chunk items and proposed that 
the true information limit is close to four items, based on a wide range of observations. 
One key observation is that there are performance discontinuities around the number 
four, with errorless performance below four and sharp increases in errors above four 
(Mandler and Shebo 1982). 

In a variation of the list recall test, the number of items that subjects can report on 
longer lists is measured. Typically, there is enhanced recall for the first few items on the 
list and enhanced recall for the last few items (Baddeley 2000). A brief delay occupied 
with another task eliminates the recency effect but has much less influence on the 
primacy effect (Glanzer 1972). List recall capability is greater if there is a semantic 
connection between objects on the list. Recall of meaningful sentences can extend to 16 
words or more, but recall for random words is limited to four or five (Baddeley et al. 
1987). 

Neuroimaging indicates considerable overlap in the cortical areas active during 
working memory and declarative memory tasks. For example, Cabeza et al. (2002) used 
fMRI to compare brain activity during an episodic memory task (recalling if a word was 
on a list of 40 words studied much earlier) with a working memory task (recalling if a 
word was in a list of four words presented 15 s earlier). They found that the cerebellum 
and left dorsolateral cortex areas were active during both tasks, bilateral anterior and 
ventrolateral cortex areas were more active during episodic retrieval and Broca’s area and 
bilateral posterior/dorsal areas were more active during working memory retrieval. A 
patient with damage to the left parietal lobe showed a deficit in working memory but 
unaffected declarative memory (Warrington and Shallice 1969; Shallice and Warrington 
1970).  
 
3.5 Priming Memory 
Priming memory is a short-term effect of exposure to a stimulus on the response to a 
similar later stimulus. Priming memory decays rapidly over a period of minutes, then 
more slowly over periods of hours and days. One experimental test of priming is word 
stem completion, in which subjects are asked to complete each of a list of three letter 
word stems with the first English word that comes to mind. A stem is the first three letters 
of a word, and in such experiments there are typically about ten possible completions. 
Previous study of the word increases the probability of the word being generated, 
provided the study is less than about 2 h prior to test (Graf et al. 1984). Amnesic patients 



 

  11 

with no ability to create new declarative memories have priming memory that is the same 
as and decays at the same rate as in normal subjects (Graf et al. 1984).  

Another important priming memory experiment is tachistoscopic image recognition, 
when a subject is shown a sequence of brief (<100ms) presentations of images of objects, 
each image separated by a masking pattern to prevent retinal, etc. afterimages. In this 
situation, few images can be accurately identified. However, if later there is a repeat 
exposure to the same image, identification accuracy increases considerably (Bar and 
Biederman 1998; Badgaiyan 2000). 

It has been argued that unconscious priming involves different mechanisms from 
when the earlier stimulus is consciously used. However, McBride et al. (2001) presented 
evidence that similar mechanisms operate in both cases. Their experiments used word 
fragments, which were words from which two to four letters had been replaced by spaces. 
Subjects were given word lists to study. After a measured period of time, they were given 
word fragments and asked to complete the word. Two types of experiment were 
performed. In one, the subjects were asked to complete the fragment with a word studied 
earlier (i.e. a conscious approach). In the other, they were asked to complete the fragment 
with the first word that came to mind (i.e. an unconscious approach). The proportion of 
completions with studied words declined with time, rapidly in the first 10 min, but both 
performance and rate of decline were the same with both conscious and unconscious 
instructions. 
 
3.6 Dissociations Indicating Separate Memory Systems  
The evidence for the different memory systems is extensively discussed in Schacter and 
Tulving (1994). Any theory of memory and learning at anatomical and physiological 
levels must provide an account for this evidence. 

Some of the most striking evidence for the separation of semantic and episodic 
memory systems from each other and from other memory types comes from observations 
of patients with damage to their hippocampal systems. In the 1950s, a number of patients 
had experimental surgery to treat intractable epilepsy. The surgery involved sectioning 
significant parts of their hippocampal systems, and although successful in reducing the 
frequency of epileptic seizures, it had some drastic side effects on their memory 
capabilities (Scoville and Milner 1957). One of these patients, HM, was extensively 
studied until his death in 2008. 

HM lost all capability to acquire new semantic or episodic memories. He could learn 
no new facts or words and could recall no events after his surgery (Scoville and Milner 
1957; Corkin 2002). However, he retained normal working memory (Wickelgren 1968) 
demonstrating a dissociation between working memory and declarative memory. He 
retained skills learned prior to surgery, including speech and reasoning skills (Scoville 
andMilner 1957). He could still acquire simple motor skills such as learning mirror 
writing, showing steady improvement over a number of sessions, even though at each 
session he had no memory of attempting the task before (Gabrieli et al. 1993), 
demonstrating a dissociation between declarative and procedural memory. His priming 
memory was retained (Gabrieli et al. 1990). In addition, his ability to access episodic 
memories for 11 years prior to his surgery was also impaired (Sagar et al. 1985), but his 
semantic memory for word meanings learned in the same 11-year period was retained 
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(Kensinger et al. 2001), demonstrating a dissociation between episodic and semantic 
memory. 

Evidence for the separation between priming and procedural memories comes from 
the study of Huntington’s Syndrome patients. Such patients are characterized by damage 
to the basal ganglia and exhibit severe deficits in motor skill learning, but their priming 
memory appears intact (Heindel et al. 1989). 

As mentioned earlier, patients have been observed to exhibit deficits in working 
memory, with no apparent deficit in declarative memory (Warrington et al. 1971). In 
these patients, performance in an immediate memory span test in which they were 
presented with strings of one to four digits, letters or words revealed good recall for one 
item strings but well below normal recall for strings with more than one item. However, 
performance in recall of a short story showed performance slightly better than for normal 
subjects. 
 
4 Other Modelling Approaches  
There is a very large number of attempts to model memory phenomena, ranging from 
attempts to prove that synaptic weight changes are always present during learning 
(Martin and Morris 2002) to high-level psychological models such as Baddeley’s 
working memory model that uses subsystems like phonological memory and central 
executive with no attempt to map into physiology. In general, previous models focus on 
one or two levels of description and do not present a consistent hierarchy of descriptions 
with information models on each level which can be mapped between all levels from 
psychology to physiology. 

The five system memory model proposed by Schacter and Tulving (1994) and 
described earlier is in fact a psychological level model with some implications for high 
level anatomy. As discussed earlier, there have been successful attempts to map the 
model into major anatomical structures by the evidence from deficits resulting from local 
brain damage (Schacter and Tulving 1994) and various imaging techniques including 
fMRI and PET. For example, Devlin et al. (2002) and Rogers et al. (2006) analyze the 
brain regions active during semantic memory processes. Kassubek et al. (2001) 
investigated brain regions active during procedural memory processes. Fletcher et al. 
(1997) and Addis et al. (2007) have investigated the brain regions active during episodic 
memory processes. These investigations demonstrate differences in the cortical areas 
active during different types of memory and are valuable high level descriptions, but do 
not provide information models for the processes that can be mapped into deeper level 
descriptions. 

Another type of approach has been the development of phenomenological models 
like Baddeley’s working memory model (1986) and the spreading activation model for 
semantic memory (Collins and Loftus 1975). These models attempt information models 
for the phenomena at high level but do not offer any mapping to more detailed levels. 
The ACT-R model (Anderson 1996) offers a detailed information model which can, for 
example, model working memory in a fair amount of quantitative detail (Lovett et al. 
1999). However, although there have been attempts to map ACT-R to fMRI imaging, the 
ACT-R information models do not provide any mapping into information models for 
more detailed anatomical or physiological structures. 
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Another extensive modelling approach to memory is that of Hasselmo and his 
collaborators. For example, they have proposed a model for the operation of working 
memory and episodic memory that uses reinforcement learning and attempts to account 
for a range of observations on rats (Zilli and Hasselmo 2007). This model postulates the 
existence of a number of buffers which can be in states reflecting current sensory inputs 
or a range of past sensory inputs that have been recorded. A key aspect of the model is 
the concept of actions which can be taken on the memory systems themselves in addition 
to actions on the external environment. There are some analogies between these proposed 
self actions and the indirect activation of receptive field information in the 
recommendation architecture. An implementation of their model has been described (Zilli 
and Hasselmo 2007), but the implementation does not provide mapping into plausible 
physiology. Furthermore, the model does not contain the recommendation architecture 
separation between clustering (i.e. condition definition and detection) and competition 
(i.e. reinforcement learning-based interpretation of conditions into behavioural 
recommendations). As a result, the model would have problems scaling up to learn 
complex combinations of behaviours. 

At the neurophysiological level there have been numerous proposals that synaptic 
plasticity supports memory (e.g. Martin and Morris 2002). However, although these 
proposals are based on experimental evidence that long-term changes to synaptic weights 
are associated with learning, they do not offer neuron level information models that can 
be mapped (through intermediate anatomical levels) into, for example, semantic and 
episodic memory. 

Another important set of models are those which attempt to understand the role of 
different EEG frequencies in memory. The beta frequency (12–30Hz), gamma frequency 
(30–80Hz) and the theta frequency (5–12Hz) occur throughout the neocortex and 
hippocampus. These frequencies appear as modulations placed upon the firing of 
pyramidal neurons and are probably managed by interneuron activity (Whittington and 
Traub 2003). A number of proposals have been made that these frequencies play various 
roles in memory.  

For example, Hasselmo et al. (2002) proposed that different functions are supported 
in different phases of the theta frequency in the hippocampus. In one part of a theta cycle, 
associations between sensory events are learned. In the other part of the cycle, previously 
learned associations are retrieved. As a result, the theta rhythm plays an important role in 
the reversal of previously learned associations (e.g. when the physical location of a 
reward changes). This model has been simulated with a considerable degree of 
physiological detail (Cutsuridis et al. 2008, 2010; Cutsuridis and Wenneckers 2009). 
However, the model focusses on the hippocampus and does not address the role of the 
cortex in these memory functions, other than the general view that it is the long term 
storage location for declarative memory, with the hippocampus providing intermediate 
term storage. How declarative memories are transferred from hippocampus to cortex is 
not addressed. 

A number of workers have suggested that the gamma frequency binds together the 
activity of neurons representing the features of the stimulus that is the focus of attention 
(e.g. Engel and Singer 2001). To this proposal has been added the idea that the gamma 
frequency is important for the formation of declarative memories (Axmacher et al. 2006). 
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There is a relationship between these proposals and the recommendation architecture 
requirement for separation between different populations of receptive field detections 
correspondingwith different cognitive stimuli but within the same neural resources. This 
relationship will be discussed below. However, the various dynamic models do not 
provide causal descriptions of higher level cognitive phenomena which can be mapped 
into the dynamic models. 

Previously proposed memory models can model memory phenomena at one or two 
levels of detail, but do not provide a hierarchy of information models which can map 
consistently from psychological phenomena to neuron physiology. 

The primary focus of this chapter is on memory and learning phenomena. However, 
the recommendation architecture is a general cognitive architecture that can provide 
descriptions of a wide range of higher cognitive phenomena in terms of brain anatomy 
and physiology (Coward 2005). A comparison between the recommendation architecture 
approach and a wide range of alternative cognitive architectures including Haikonen’s 
neural architecture, Baar’s global workspace, virtual machine models, simulation models, 
kernel architectures and forward models has been performed (Coward and Gedeon 2009). 
This study concluded that the alternative approaches do not take adequate account of 
natural selection pressures on brain resources, and the mapping between higher cognition 
and detailed anatomy and physiology is more plausible for the recommendation 
architecture.  

 
5 Brain Anatomy and the Recommendation Architecture Model  
The RA cognitive architecture maps the information model for each major anatomical 
structure into more detailed models for its substructures and so on all the way down to 
neuron physiology. The architecture explains how the more detailed models are 
implemented physiologically, and how the detailed models interact to support higher 
level models, up to descriptions of memory on a psychological level. 
 
5.1 Cortical Structure  
The cortex is a 3–4mm thick sheet of tissue, with an area in adult humans of about 2,600 
cm2. The cortical sheet is organized into six layers, with the layers differing in cell type, 
size and density and in intralayer and interlayer connectivity. Six layers are generally 
prominent, but sublayers are often visible, and sometimes a major layer can be absent. 
The cortex is organized perpendicular to the sheet into groups of about 100 cells linked 
across the layers. These groups, called minicolumns, are produced by the cortical growth 
process, each minicolumn from a small set of progenitor cells. Cortical columns are much 
larger vertical structures, perhaps formed by binding together a number of minicolumns. 
Cortical columns vary from 300 to 600 µm in diameter and are distinguished by 
similarity of the receptive fields of all their principal neurons and by common short-range 
horizontal connections (Mountcastle 1997). 

The cortical sheet is separated into at least 50 areas (Brodmann 1908; Petrides and 
Pandya 1999, 2002; Morasan et al. 2001). These areas differ in the cell types, sizes and 
densities observed in each layer and sublayer, in the concentration of various 
neurochemicals such as the neurofilament protein that influences neuron size and shape, 
in the relative degree of myelinization of each layer and sublayer, in the interconnectivity 
with adjacent layers and in the interconnectivity with other areas. 
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5.2 Cortical Information Models  
As discussed earlier, the information model for the cortex is definition and detection of 
receptive fields on many different levels of complexity within the information available 
to the brain. The number of detections must reach at least a minimum but not an 
excessive level in response to every overall brain input state. A receptive field is defined 
by a set of similar information conditions, with the receptive field being detected if a 
significant subset of the conditions is detected. 
 
5.2.1 Information Model for a Cortical Area 
The information model for an area is definition of receptive fields within one range of 
complexity and detection of the most significant receptive fields in each input state. 
These receptive fields must adequately address five requirements. The first requirement is 
that, in order to preserve previously acquired behavioural meanings, receptive fields can 
expand to detect additional, similar conditions but with some tightly restricted exceptions 
cannot change or discard previously added conditions. The second requirement is that, in 
response to any brain input state that results in inputs to the area, the number of receptive 
field detections must reach at least a minimum level. This second requirement is to 
ensure that, as discussed earlier, enough alternative behavioural recommendations are 
available to generate a high integrity behavioural selection. If detections are below the 
minimum, some receptive fields will expand until the minimum is reached. 
 

 
 
Figure 2 The concept of conditions and condition similarity. A visual domain of 30 x 30 pixels is defined. 
A visual object is present in the domain. A condition is defined by a set of elements (in this case pixels), 
with a state specified for each element of the set. Such conditions are illustrated in a and b. If a visual input 
results in a high proportion of the pixels in the set being in their specified state, the condition is present. 
Two conditions are similar if a high proportion of the elements and states that define them are the same 
and/or often occur in the same input states. Conditions I and II are very similar by this definition, since 
seven of their elements are the same, and all of the elements occur in the same input state. With this 
definition of similarity, similar conditions will tend to have similar behavioural implications (such as 
recommending saying “that is a bird”) 

 
The third requirement is that, in response to any brain input state that results in inputs 

to the area, the number of receptive field detections does not reach an excessive level. 
The fourth requirement is that, to conserve resources, two receptive fields should not be 
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detected consistently in the same input states. In other words, receptive fields must be as 
orthogonal as possible, or as statistically independent as possible. The fifth requirement is 
that the set of receptive fields programmed in one area must be able to discriminate 
between different perceptual circumstances, whenever such a difference implies that a 
different behavioural response is appropriate. The type of perceptual circumstance is 
different for different areas, the receptive fields in one area discriminate between visual 
features, in another between object categories, in yet another between different types of 
groups of objects, etc. as discussed earlier. 

 

 
 
Figure 3 The concept of receptive field expansion management. In the illustration there are six modules, 
each module having a receptive field defined by a set of similar conditions as described in figure 2. If a 
significant proportion of the conditions programmed in a module are detected, the module receptive field is 
detected and the module produces an output. The array of modules is required to detect at least two 
receptive fields in every input state. In scenario I, the visual input state results in detection of a significant 
proportion of conditions in modules b and d, corresponding with receptive field detection and resulting in 
outputs from those modules. The level of condition detection in other modules is relatively low. In scenario 
II, the visual input state is less familiar, and initially only module d has enough condition detection for 
receptive field detection. Because this is less than the minimum, the module with the highest degree of 
condition detection below the proportion for receptive field detection (i.e. module g) is selected, and 
additional conditions actually present in the current input are added to the module. Such additions expand 
the receptive field of the module and result in enough condition detections for receptive field detection and 
module output (scenario III). Selection of the module without receptive field detection but with the highest 
degree of condition detection is equivalent to selecting the module requiring the least receptive field 
expansion 
 

The conceptual process for definition of receptive fields can be understood by 
consideration of figures 2 and 3. In figures, there is a visual input domain which is an 
array of pixels. Visual inputs appear within the domain. A condition is defined by a set of 
elements (in this case pixels) and a state for each element, the condition is detected if a 
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high proportion of the elements are in their defined state. As illustrated in figure 2, two 
conditions are similar if their elements are the same and/or often occur in the same input 
states. The modules illustrated in figure 3 have receptive fields defined by groups of 
similar conditions, with the receptive field being detected if a high proportion of the 
conditions is detected. An array of modules such as the one illustrated in figure 3 detects 
different receptive fields, all in one range of complexity. Such an array is required to 
detect at least a minimum number of receptive fields in every input state. If the minimum 
is not achieved, modules that are detecting a significant number of conditions but less 
than the proportion for receptive field detection add conditions until the proportion for 
receptive field detection is reached. These conditions are selected (by a biased random 
process to be discussed later) from the large number of conditions that are present in the 
current input state. Receptive field expansions therefore occur in those modules for which 
the smallest expansion is required, causing the least damage to existing behavioural 
meanings of the receptive fields.  

Arrays of modules are arranged in a sequence, with the conditions detected in one 
array being combinations of the conditions detected in the preceding array. Hence there is 
a steady increase in receptive field complexity down the sequence, where complexity can 
be defined as the number of rawsensory inputs (in the conceptual example pixels) that 
must be present in their appropriate state for the receptive field to be detected. 
 

 
 
Figure 4 Sequence of arrays of modules in which the conditions detected in one array are combinations of 
receptive field detections by modules in the preceding array. Few receptive fields will correspond with 
cognitively unambiguous circumstances, but at the appropriate level of receptive field complexity, the sets 
of receptive fields detected within instances of one category will be sufficiently different from the sets 
detected within instances of any other category that the currently detected set can effectively guide 
selection of a behaviour appropriate to current category. In other words, the array of columns will be able 
to discriminate between different categories. Receptive fields on different levels of complexity will be able 
to discriminate effectively between different types of cognitive categories (features, objects, groups of 
objects, etc.). Multiple levels of receptive field complexity may be relevant to, for example, discrimination 
between different types of groups of objects 

 
It may be possible to describe receptive fields in areas close to sensory input in 

sensory terms [such as the class of visual shapes that contain the receptive field, see 
Tanaka (2003)]. However, for higher areas, receptive fields can best be understood 
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simply as groups of receptive fields in other areas that have tended to be detected at 
similar times in the past. The receptive field in one area receives inputs from the group of 
receptive fields in other areas and is detected if a high proportion of the group is present. 

The mechanism for definition of receptive fields means that in general one receptive 
field will not correspond with one unambiguous cognitive circumstance such as an object 
category. In other words, no single receptive field will always be detected in all instances 
of one object category and in no instances of any other category. However, an array can 
be evolved to discriminate between types of cognitive circumstance, with arrays with 
different receptive field complexities being effective for discriminating between different 
types as illustrated in figure 4. 
 

 
 
Figure 5 An array of modules detecting receptive fields at a level of complexity effective for discriminating 
between different visual object categories like DOG and CAT. In I, the modules that detect their receptive 
fields in some instances of DOG are shaded. A different subset of these shaded modules will detect its 
receptive field in each actual instance of DOG, and each shaded module will have some recommendation 
strengths (in subcortical structures) in favour of DOG-appropriate behaviours such as saying “that is a 
dog”. In II, the modules in the same array that detect their receptive fields in some instances of CAT are 
shaded. There is some overlap between the CAT and DOG modules illustrated in I and II, reflecting the 
existence of some visual similarities between cats and dogs. Receptive fields detected in some instances of 
both CAT and DOG will have recommendation strengths in favour of both DOG- and CAT-appropriate 
behaviours. All the modules will also have recommendation strengths in favour of behaviours appropriate 
to many other categories of object. In III, the modules in the same array that detect their receptive fields in 
one actual CAT instance are shaded. Although some modules with DOG-appropriate recommendation 
strengths are active, the predominant recommendation strength across all receptive fields will be CAT-
appropriate. The module array can thus discriminate between dogs and cats. 
 

The meaning of discrimination can be understood from figure 5. The modules in the 
array illustrated in the figure detect receptive fields within a range of complexity 
appropriate for discriminating between visual objects. Each receptive field corresponds 
with some visual circumstance which may occur in some instances of many different 
object categories. Thus, for example, one module may detect its receptive field in some 
instances of the category DOG, but also in some instances of the category CAT. In 
general, one receptive field will be detected in some instances of many different 
categories. There are no modules that detect their receptive fields in all DOG instances 
and in no instances of other categories, and individual modules are therefore cognitively 
ambiguous. However, the set of modules that detect their receptive fields in response to 
an actual CAT instance will have a predominant recommendation strength in favour of 
CAT-appropriate behaviours. 
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Module receptive field definition is not directly guided by the existence of cognitive 
categories, and an array might lack discrimination in some cases. A discrimination 
problem and the mechanism for resolving it are illustrated in figure 7. In the figure, 
because of a visual similarity an instance of a dog and an instance of a cat activate the 
same receptive fields. In other words, the array of receptive fields cannot discriminate 
between the two instances. The effect will be that the same behaviours will be 
recommended for both objects. Suppose that the dog was seen first, a DOG-appropriate 
behaviour was performed and rewarded, and the set of columns now have a strong overall 
recommendation strength in favour of repeating that behaviour in the future.When the cat 
is seen, there is strong recommendation strength in favour of a DOG-appropriate 
behaviour, but the behaviour is punished because it is incorrect. This strong 
recommendation followed by negative reward triggers expansion of receptive fields in 
modules with strong internal activity, even if the number of active modules already 
reaches the minimum required level. There is a reasonable probability that these modules 
will not detect their receptive fields in a repetition of the DOG instance, making it 
possible to discriminate between the instances in the future. 
 

 
 
Figure 6 Managing discrimination problems. Initially, the visual similarities between the two pictures result 
in activation of the same sets of columns at the level of receptive field complexity that discriminates 
between object categories. Hence the same behaviour will be recommended in response to the two pictures 
(such as saying “cat”) even though one is a cat and the other is a dog. The contradictory consequence 
feedback in response to the same behaviour following activation of the same columns results in forced 
receptive field expansions which lead to different column sets in response to the two objects 
 

Because receptive fields expand over time, there is a requirement to limit the total 
number that is activated in response to one input state. This limitation is achieved by 
inhibition between receptive fields so that only the most strongly present are detected. 
The means by which this is achieved will be discussed after the information model for a 
pyramidal neuron has been described (figure 9). 
 
5.2.2 Information Model for a Cortical Column 
The information model for a cortical column is definition and detection of a receptive 
field, including identification of the circumstances in which expansion of its receptive 
field could be appropriate. This information model can be understood by consideration of 
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figure 7. The cortical column information model also includes indirect activation of a 
receptive field under special circumstances in which the field is not actually present in the 
current sensory input state. Such indirect activations are behaviours that must be 
adequately recommended by currently active receptive fields. 
 

 
 
Figure 7 Information model for a cortical column. A simple cortical column model made up of three layers 
of principal neurons is illustrated. The conditions detected by neurons in the top layer are combinations of 
receptive field detections in the areas that provide inputs to the column. The conditions detected by neurons 
in the second layer are combinations of receptive field detections by neurons in the top layer. The 
conditions detected by neurons in the bottom layer are combinations of receptive field detections by 
neurons in the middle layer. Outputs from the bottom layer are the column receptive field detections and go 
to other cortical areas and also to subcortical structures where they are interpreted as behavioural 
recommendations. Receptive field complexities therefore increase somewhat from the top to the bottom 
layer. If in response to some input state there is no activity in the bottom layer but significant activity in the 
middle layer, this indicates that there is some similarity between the current state and other states that have 
contained the column receptive field. Such middle layer activity therefore indicated that if the receptive 
field of the column were expanded slightly, it would be detected in the current state. The strength of middle 
layer activity therefore indicates the degree to which receptive field expansion would be appropriate if 
required in response to the current input state. Outputs from the middle layer go to the resource manager, 
where they are used to determine the set of columns with the strongest degree of internal activity. If 
additional receptive field detections are required, then set of columns receive inputs from the resource 
manager that drive receptive field expansion. 
 

In figure 7, there are three layers of principal neurons (generally pyramidal). The 
inputs that define the conditions detected in the top layer come from other areas of the 
cortex. The inputs that define the conditions detected in the middle layer come from the 
top layer, and the inputs that define conditions detected in the bottom layer come from 
the middle layer. The bottom layer provides outputs to other cortical areas and to 
subcortical structures where they are interpreted as behavioural recommendations. Note 
that this is a conceptual model, there could be more layers for various functional reasons 
(Coward 2005), and connectivity need not necessarily be sequential from top to bottom 
layer. From the point of view of the information model, the key point is that the 
conditions detected in the layer that provides outputs are less complex than the conditions 
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detected in earlier layers. A situation could therefore arise in which there in no output 
from the column as a whole, but significant condition detection in earlier layers. The 
implication of such a situation is that the current input state contains many of the 
conditions that contribute to the definition of the column receptive field but not sufficient 
to trigger receptive field detection. Hence the degree of activity of neurons in the middle 
layer is a good indicator of the degree to which expansion of the column receptive field 
would be appropriate if required in response to the current input state. 

The requirement is to determine if receptive field expansions are required (based on 
the overall degree of activity of columns across the area) and if so to determine the 
columns with the highest degree of internal activity and trigger receptive field expansions 
in those columns. Although in principle this requirement could be met by all-to-all 
connectivity between columns, it is more efficient and effective to use a resource 
manager (Coward 1990, 2005, 2009a). In figure 7, the output from the middle layer of the 
column to the resource manager carries information on the internal activity of the layer, 
and the inputs from the resource manager drives receptive field expansions as described 
below. 
 
5.2.3 Information Model for a Pyramidal Neuron  
The information model for a pyramidal neuron is definition and detection of a receptive 
field within a column. There are a number of aspects to this information model. First, 
separate information conditions that constitute the receptive field must be defined by 
groups of elements, with a condition being detected if enough of the elements are in the 
appropriate state. Second, the receptive field of the neuron must be detected and an 
output generated if a significant proportion of the conditions are detected. Third, it must 
be possible to expand the receptive field in appropriate circumstances by adding 
appropriate conditions. Fourth, it must be possible to limit the total activity across an 
array of columns, ultimately by limiting neuron activity in an appropriate fashion. Fifth, it 
must be possible to activate the neuron in some circumstances in the absence of its 
receptive field. 

The pyramidal neuron information model is conceptually illustrated in figure 8. In 
this information model, conditions correspond with groups of synapses on one branch of 
the apical dendrite. These synapses are connection points for axons coming from other 
pyramidal neurons. An incoming action potential causes a synapse to inject voltage 
potential into its branch. The magnitude of the injected potential is proportional to the 
weight of the synapse. In the conceptual figure, synaptic weights are in arbitrary units 
(w). As described in the next section, an injected potential increases rapidly after the 
arrival of the action potential and then decays more slowly. A significant proportion of 
these synapses must receive incoming action potentials for the total potential in the 
branch to reach a threshold enabling a potential contribution deeper into the dendrite, and 
thus raise the chance of the soma producing an output action potential indicating 
detection of its receptive field. Because of the decay in potentials, the inputs to one 
branch must occur within a relatively short time so that the potentials resulting from 
action potentials at different synapses add to each other. Synapses on one branch thus 
correspond with the elements defining one information condition, which is detected if a 
high proportion of the inputs are active. 
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Figure 8 Information model for a pyramidal neuron. The neuron has a body (or soma) and two sets of 
dendritic trees. Inputs that define the conditions that in turn define the receptive field of the neuron synapse 
on different branches of the apical dendrite. If an action potential arrives at a synapse, it injects a voltage 
potential into the branch that is proportional to the weight of the synapse. If the total weight injected by 
action potentials arriving at all the synapses on a branch exceeds a threshold, the branch injects potential 
deeper into the dendrite. The group of synapses on a branch thus define an information condition. If the 
total potential injected into the dendrite reaches a high enough level (i.e. enough conditions are detected), 
the dendrite will inject potential into the soma. If the potential injected into the soma exceeds a threshold, 
the soma will generate an output action potential. The group of conditions defined on apical branches thus 
define the receptive field of the neuron. Inhibitory signals from local interneurons target the soma (or the 
proximal dendrites) and reduce the chance of the neuron producing an output. The basal dendrite can also 
inject potential to trigger an output action potential; the inputs to the basal dendrite come from sources that 
can generate such an output in the absence of the neuron receptive field 
 

The neuron will only produce an output if a number of branches inject potential 
deeper into the dendrite within a relatively short period of time. The group of conditions 
corresponding with branches thus define the receptive field of the neuron, which is 
detected if a significant proportion of the conditions are detected. 

A neuron can expand its receptive field by addition of new conditions. Such addition 
is achieved by means of provisional conditions such as the one illustrated in the lower left 
of figure 8. The total weight of all the synapses that define the elements of the condition 
is not sufficient for the branch to reach the threshold for potential injection deeper into 
the dendrite. However, there are additional synapses on the branch that come from the 
resource manager. If within a relatively short period of time, a high proportion of the 
condition defining elements are active and the inputs from the resource manager are also 
active, there will be enough potential in the branch to inject potential deeper into the 
dendrite. If a number of regular conditions are also being detected, then there will be 
enough potential to trigger firing of the neuron. If the neuron fires, a backpropagating 
acting potential into the branch increases the weights of any synapses that have recently 
received an action potential from their source neuron. This is the long-term 
potentiationmechanism observed by Bi and Poo (1998). The effect is that the weights of 
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the condition defining inputs are increased to the point that they can contribute to the 
firing of the neuron independent of the state of the inputs from the resource manager. 
Effectively, a new condition has been recorded. 

A key requirement is that new conditions on a neuron must be similar to previously 
recorded conditions on the neuron or on other neurons in the same layer of the same 
column. As discussed earlier, similarity means that the elements defining the condition 
are the same as and/or often active in the past at the same time as the elements defining 
other conditions. There are a number of factors that ensure this similarity. First, for a new 
condition to be recorded, conditions already programmed on the same neuron must be 
detected. Second, the inputs to a provisional condition are selected from those available 
in the neighbourhood. Third, the inputs to a provisional condition are selected from those 
often active in the past when the neuron is also active. This final factor is achieved 
utilizing REM sleep (Coward 1990 etc.). In REM sleep, there is a rerun of a selection of 
past experience. Provisional connectivity is established between neurons often active at 
the same time during this rerun. 

Limiting activity within a column and also across an array of columns is achieved 
using inhibitory interneurons with the connectivity illustrated in figure 9. 

As described earlier, there is behavioural value in the ability to indirectly activate 
columns on the basis of different types of temporally correlated past activity. Inputs to 
indirectly activate neurons in a column must be segregated from inputs defining receptive 
fields. Hence these inputs target a different dendrite system, the basal dendrites. 

The staged integration model described in this section is generally consistent with the 
ideas of Hausser and Mel (2003). However, the details of the staging could be different; 
the key requirement is to achieve appropriate receptive field expansions. 
 

 
 
Figure 9 Interneuron connectivity to limit column activity. Interneuron outputs inhibit their targets. 
Interneurons target pyramidal neurons in the same layer of the same column. Interneurons can receive 
inputs from pyramidals in the same layer of the same column or from the same layer of columns in the 
same area. Connectivity between columns can be economized by biasing it in favour of connectivity 
between interneurons and pyramidals often active at the same time. Connectivity within a column limits 
overall activity within the column. Connectivity between columns effectively results in a competition 
between columns, reducing the total number of active columns. 
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5.2.4 Pyramidal Neuron Dynamics 
As described earlier, a number of frequencies can be observed in the EEG which reflects 
the firing patterns of pyramidal neurons. In the recommendation architecture model, these 
frequencies reflect different information processing functions by networks of pyramidal 
neurons. In general terms, one action potential generated by a neuron indicates a 
detection of its receptive field at one point in time. The degree to which the receptive 
field is present is reflected in the rate at which action potentials are generated, and such 
rates averaged across many neurons result in the beta band frequencies. As discussed 
earlier, effective use of cortical resources requires the ability to maintain separate but 
simultaneously active populations of receptive field detections within the same resources. 
The gamma band reflects an information process that maintains a separation between 
simultaneous receptive field detections within different sensory objects in the same 
neuron network. The theta band reflects an information process that maintains a 
separation between groups of receptive fields that are detected at a sequence of different 
points in time. 
 

 
 
Figure 10 Leaky integration and integration windows in a pyramidal neuron. For simplicity, staged 
integration is omitted. Action potential spikes arriving at different synapses each result in the injection of 
potential into the neuron. This injected potential rises over a period of a couple of milliseconds, then decays 
again with a decay constant of the order of 10 ms. It is assumed that the synaptic strengths are all the same. 
The postsynaptic potential resulting from different spikes adds linearly, and the total potential must exceed 
a threshold to result in (or contribute to) firing of the neuron. Because of the decay constant, two spikes 
must arrive close together in time to reinforce each other. Unless a number of spikes arrive within a fairly 
short period of time (of the order of the decay constant), the threshold will not be reached. This situation 
thus supports the concept of an integration window or period within which a minimum number of spikes 
must arrive for there to be a contribution to target neuron firing. 
 

The information model for the response of a pyramidal neuron to a sequence of 
action potentials is illustrated in figure 10. For simplicity, dendritic structure and staged 
integration is omitted for the figure, and it is assumed that the synaptic strengths are all 
the same. The potential injected by one action potential rises relatively rapidly after the 
arrival of the input action potential, peaks after 2–3 ms and then decays with a time 
constant of the order of 8 ms. This time constant implies that action potentials arriving 
significantly more than 8ms apart do not reinforce each other. Hence if the threshold for a 
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group of synapses to contribute to the firing of the neuron is several times the maximum 
potential injected by one spike, at least a minimum number of spikes must arrive within a 
period of the order of the time constant for the group of spikes to contribute to the firing 
of the neuron. The concept of an integration window is therefore useful, where at least a 
minimum number of spikes must arrive within the integration window to contribute to 
neuron firing. The integration window is not completely fixed, it depends both on the 
ratio of leaky integration peak to threshold and on how close together the spikes arrive, 
but simulations demonstrate that it is a viable concept (Coward 2004). 

An important concept that makes the integration window functionally useful is 
frequency modulation as illustrated in figure 11. A frequency modulation signal applied 
to a neuron shifts each of its output spikes towards the nearest peak in the frequency 
modulation signal. Such a frequency modulation signal could be imposed by a regular 
sequence of spikes at the modulation frequency. Interneuron inputs generally inhibit 
the firing of their targets, but if an inhibitory spike arrives more  than about 5 
milliseconds before an excitatory spike, it adds to the excitatory effect (Gulledge 
and Stewart 2003). A regular stream of interneuron spikes will therefore tend to 
impose a frequency modulation on the outputs of pyramidal neurons. 

One functional value of frequency modulation can be understood from figure 12. If 
unmodulated inputs from some visual domain are provided to an array of columns, then 
the degree of receptive field detection will be much lower than if the inputs are 
modulated. Hence a domain in the visual field can be selected by placing a frequency 
modulation on all the inputs from that domain, and the effect will be preferential 
receptive field detection (and therefore behavioural recommendation generation) with 
respect to that domain. This is the information model for the attention function. Note that 
if the modulation is placed on inputs, the outputs of the neurons will also be frequency 
modulated, and the modulation will propagate through following layers of neurons. 
 

 
 
Figure 11 Concept of frequency modulation. In I, a neuron produces an output made up of a sequence of 
action potential spikes. For ease of explanation, the illustrated sequence is regular; the actual sequences 
produced by neurons are irregular but the concept applies in the same way. In II, a frequency modulation 
signal is applied to the neuron. The effect of the signal is to shift output spikes towards the nearest peak in 
the modulation signal 
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Figure 12 Frequency modulation of inputs from a source. In I, three unmodulated input sources target a 
neuron. Within any integration window, there is only a total of about two spikes. If at least 4 spikes must be 
present to generate an output, there will be no outputs. In II, the inputs are modulated. This results in the 
same or fewer spikes in the integration window around the modulation minimum, but more around the 
maximum. There are sufficient around the maximum to fire the target neuron. Hence if a group of inputs 
from one source (such as a domain in the visual field) are frequency modulated, receptive fields will be 
detected only within the inputs from that domain 
 

 
 
Figure 13 Frequency modulation enabling simultaneous receptive field detections in multiple objects 
without interference. Inputs from different sources are given different phases of the same frequency 
modulation. As a result, spikes from the different sources tend to arrive in different integration windows, 
meaning that receptive fields present within different input sources can be detected without interference in 
the same neural resources, even in the same neuron. 
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Another functional value can be seen from figure 13. If the interval between peaks in 
the modulation frequency is much larger than the integration window, then several 
integration windows can fit within one modulation cycle. If inputs from several different 
sources are modulated with the same frequency but at different phases, the spikes from 
the different sources will tend to arrive in different integration windows. Hence neuron 
receptive fields will be detected separately and independently within the different input 
sources. In other words, receptive fields within several different input sources (such as 
visual objects) can be detected simultaneously without crosstalk in the same neural 
resources. 

The principle of maintaining a separation between different populations of receptive 
field detections can be extended to make use of multiple different frequencies. For 
example, in order to separate detection groups of receptive fields corresponding with 
sensory circumstances at a sequence of different points in time, a different frequency 
could be used. 
 
 

 
 
Figure 14 Organization of the thalamus into nuclei with reciprocal connectivity between a nucleus and 
specific cortical areas. In addition, different additional cortical areas provide inputs to each nucleus but do 
not receive inputs in return. All connectivity between the thalamus and the cortex are excitatory 
 
5.3 Structure of the Basal Ganglia and Thalamus 
The basal ganglia and thalamus are organized into nuclei: clusters of neurons separated 
by regions containing mainly axons. The major nuclei and connectivity of the basal 
ganglia and thalamus can be understood by consideration of figures 14–17. 

The thalamus is made up of a number of major nuclei as illustrated in figure 14. Each 
nucleus has strong reciprocal excitatory connectivity with a different cortical area, plus 
inputs from some other areas. Between each nucleus and the cortex, there is a nucleus 
called the thalamic reticular nucleus (TRN). As illustrated in figure 15, all axons between 
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a thalamic nucleus and its associated cortices pass through a sector of the TRN, which 
regulates the information flow (Guillery et al. 1998). 

There are a number of separate nuclei that make up the basal ganglia. These nuclei 
and the major connectivity between them and with the thalamus and cortex are illustrated 
in figure 16. 

There are in fact several parallel paths from the cortex through the striatum, GPi/SNr 
and thalamus and back to the cortex (Alexander et al. 1986). These paths start and end in 
a cortical area different for each path, and each path goes through different subnuclei of 
the striatum, GPi, SNr and thalamus. In each path, the striatum also receives cortical 
inputs from some additional areas, but there is no return connectivity from the path to 
those areas. 
 

 
 
Figure 15 All connectivity between a thalamic nucleus and the cortex passes through a sector of the TRN. 
The primary connection paths for one type of thalamic nucleus are illustrated (Guillery et al. 1998). The 
principal neurons of the thalamic nucleus, thalamocortical projection neurons, send excitatory connections 
to layer 4 of the cortex. Thalamocortical neurons receive excitatory inputs from pyramidal neurons in 
layers 5 and 6. Axons from layer 6 pyramidals and from thalamocortical neurons branch in the TRN to 
form synapses on the inhibitory interneurons that are the most common cells in the TRN, but the axons 
from layer 5 do not form such synapses. These inhibitory interneurons project to thalamocortical neurons. 
In addition, thalamocortical neurons receive inhibitory inputs from neurons in the basal ganglia 
 

Individual neurons in the striatum and in the globus pallidus correspond with specific 
aspects motor activity such as the direction of arm movement but not to the underlying 
pattern of muscle activity associated with that movement (Crutcher and DeLong 1984; 
Mitchell et al. 1987). 

The nucleus accumbens is sometimes regarded as part of the basal ganglia. As 
illustrated in figure 18, it gets substantial inputs from the amygdala and from the 
orbitofrontal cortex, and its outputs target the GPi and SNr nuclei of the basal ganglia. 
 
5.4 Information Models for the Thalamus and Basal Ganglia 
The general information model for these structures is interpretation of cortical receptive 
field detections as behavioural recommendations and determining and implementing the 
most strongly recommended behaviour. Reward feedback following a behaviour adjusts 
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recently utilized recommendation weights. There are five components to this information 
model. The first is determination of raw total recommendation weights for each 
behaviour. The second is a competition between different behaviours to determine the 
most appropriate. The third is modulation to ensure that one and only one behaviour is 
selected. The fourth is implementation of the one selected behaviour. The fifth is utilizing 
reward feedback to modulate the probability of the same behaviour being selected in 
similar circumstances in the future. 
 

 
 
Figure 16 The major nuclei and connectivity of the basal ganglia. Excitatory inputs from the cortex arrive 
at spiny projection neurons in the striatum. Each such neuron receives one or two inputs from a very large 
number of different cortical pyramidals. Striatal spiny projection neurons inhibit their targets, and there are 
two populations of these neurons. D1 population neurons project directly to the globus pallidus internal 
segment (GPi) and substantia nigra pars reticula (SNr) and are excited by dopaminergic inputs from the 
substantia nigra pars compacta (SNc). D2 neurons project indirectly to the GPi and SNr via two additional 
nuclei, the globus pallidus external segment (GPe) and the subthalamic nucleus (STN). As a result, the D2 
population neurons ultimately excite the GPi and SNr. D2 population neurons are inhibited by 
dopaminergic inputs from the SNc. The GPi and SNr generate constant (tonal) inhibitory outputs to the 
thalamus. The direct path therefore tends to reduce inhibition of the thalamus while the indirect path tends 
to maintain this inhibition. As described earlier, the thalamus has reciprocal excitatory connectivity with 
the cortex. There is no direct return path from the basal ganglia to the cortex 
 
4.1 Information Model for the Thalamus 
The thalamus implements selected behaviours. Such an implementation is generally the 
release of information into the cortex, between cortical areas, or out of the cortex. 
Principal cells in the thalamus excite different groups of cortical columns and correspond 
with the releasing of information from those groups. Thalamic principal cells are excited 
by a range of columns in their groups and elsewhere. This connectivity can be viewed as 
the cortical columns recommending the release of outputs from the group. However, the 
basal ganglia tonically inhibits the thalamic cells, and release will not occur unless the 
tonic inhibition is reduced. The release of information includes imposing frequency 
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modulation with an appropriate phase. This frequency modulation could be the role of the 
TRN, with TRN interneurons inhibiting thalamocortical neuron activity out of phase with 
the targetted modulation peaks. 
 

 
 
Figure 17 Parallel paths linking basal ganglia, thalamus and cortex. In each path, one striatal subnucleus 
receives inputs from one primary area, sends outputs to one pair of GPi and SNr subnuclei, which send 
outputs to one thalamic nucleus that connects reciprocally with the primary cortical area. In each path, a 
different group of cortical areas also provide inputs to the striatal subnucleus but does connect reciprocally 
with the corresponding thalamic nucleus. Abbreviations follow Alexander et al. (1986) 
 

 
 
Figure 18 The primary connectivity of the nucleus accumbens. Following a behaviour, both the 
orbitofrontal cortex and amygdala provide information indicating the detection of circumstances in which 
reward feedback is appropriate. The nucleus accumbens interprets these inputs as recommendations in 
favour of adjustments of the weights in the GPi and SNr that resulted in the recent behaviour and applies 
the most strongly recommended adjustments. The weight adjustments therefore affect the probability of 
acceptance of similar behaviours in similar circumstances in the future 
 
4.2 Information Model for the Striatum 
The information model for the striatum is that different striatal projection neurons 
correspond with different behaviours or types of behaviour. Each neuron receives inputs 
from many cortical pyramidals, which can be interpreted as raw recommendation weights 
in favour of the behaviour corresponding with the striatal neuron. For reasons discussed 
below, there is a pair of striatal projection neurons corresponding with each behaviour, 
with similar inputs, but one population D1 and the other population D2. 

Competition within the striatum is implemented by the extensive local axon 
collaterals of striatal projection neurons, which mainly target other striatal projection 
neurons (Somogyi et al. 1981). In addition, there are populations of striatal interneurons 
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that receive inputs from the cortex and target striatal projection neurons (Tepper and 
Bolam 2004). 
 
5.4.3 Information Model for the GPi and SNr 
The information model for the GPi and SNr is that individual principal neurons 
correspond with behaviours or types of behaviour. A principal neuron produces steady 
(tonic) inhibitory output to thalamic principal neurons corresponding with the release of 
cortical outputs that implement the behaviour corresponding with that principal neuron. 
With this connectivity arrangement, if a principal neuron in the GPi and SNr is inhibited, 
the result will be implementation of its corresponding behaviour. 

A GPi and SNr principal neuron corresponding with a particular type of behaviour is 
targetted over the direct path (figure 16) by the D1 population striatal neuron 
corresponding with the same behaviour. This connectivity is inhibitory and therefore 
tends to encourage the implementation of the behaviour. The GPi and SNr neuron is 
targetted over the indirect path by D2 population neurons corresponding with different 
behaviours. This connectivity is excitatory and therefore tends to discourage the 
behaviour. GPi and SNr therefore supplement the competition between alternative 
currently recommended behaviours. 
 
5.4.4 Information Model for the Nucleus Accumbens 
The nucleus accumbens is observed to be associated with rewards (e.g. Ritz 1999). It 
targets the area of the basal ganglia in which the competition between different 
alternative behaviours occurs. The information model is therefore that following a 
positive reward it increases the weights that favoured recently accepted behaviours and 
decreases the weights that opposed them and vice versa for a negative reward. 
 
5.5 Structure of the Hippocampal System 
The hippocampus proper is made up of the CA fields and the dentate gyrus. The 
hippocampal system is made up of the hippocampus proper, some associated cortices and 
some associated subcortical structures. There is extensive connectivity between these 
structures as illustrated in figure 19. 

All cortical areas except primary sensory project to the perirhinal or the 
parahippocampal cortices. These cortices project to the entorhinal cortex, which in turn 
projects to all the components of the hippocampus proper. CA1 generates outputs that go 
back through the entorhinal, perirhinal and parahippocampal cortices to the cortical areas 
from which inputs are derived. 

The CA fields are cortex like, but with just one layer of pyramidal neurons. Within 
the hippocampus proper, there are two positive feedback loops: dentate gyrus granule 
cells excite mossy cells and CA3 pyramidals excite large numbers of other CA3 
pyramidals. Each granule cells excites a small number of CA3 pyramidals and (via CA3 
interneurons) inhibits a much larger number of CA3 pyramidals. 
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Figure 19 The structure of the hippocampal system. Outputs from all cortical areas except primary sensory 
areas go through the perirhinal and parahippocampal cortices to the entorhinal cortex and from there to all 
regions of the hippocampus proper. There is massive connectivity between the various CA fields and the 
dentate gyrus of the hippocampus proper. Outputs from CA1 return via the subicular complex, and the 
entorhinal, perirhinal and parahippocampal cortices to the cortex. In addition, there are several connectivity 
loops involving subcortical structures. There is connectivity from the CA fields to the mammillary bodies, 
connectivity from the mammillary bodies to the anterior thalamus and so back to CA1. The subicular 
complex and entorhinal cortex project to the amygdala, which it turn projects back to those same structures 
 
5.6 Information Model for the Hippocampal System 
The information model for the hippocampal system is definition of which cortical 
columns will expand their receptive fields at each point in time. Identification of the most 
appropriate columns for such expansion uses two sources of information. One is 
information on the current internal activity of all cortical columns. The other is 
information on groups of columns that have tended to expand their receptive fields at 
similar times in the past. 

The information model for the associated cortices is illustrated in figure 20. Columns 
in the PHC and PRC have receptive fields that are internal activity by groups of cortical 
columns that have tended to expand their receptive fields at similar times in the past, 
where internal activity is indicated by outputs from column middle layers. Bottom layer 
outputs from a PHC or PRC column target the cortical columns that make up their 
receptive fields. These bottom layer outputs are not generated unless there is both 
receptive field detection and input from the ERC. Such an input from the ERC triggers a 
PHC or PRC column output, with receptive field expansion of the PHC or PRC column if 
required. Such a receptive field expansion would therefore add a new group of cortical 
columns about to expand their receptive fields at the same time.  

Columns in the ERC have receptive fields that are internal activity by groups of PHC 
and PRC columns that have tended to expand their receptive fields at similar times in the 
past. Bottom layer outputs from an ERC column target the PHC and PRC columns that 
make up their receptive fields. Such bottom layer outputs are only generated if there is 
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both receptive field detection and inputs from CA1 pyramidals. Inputs from CA1 
pyramidals trigger bottom layer outputs with receptive field expansions as required. 
Again, such receptive field expansions add groups of PHC and PRC columns about to 
expand their receptive fields at the same time. 
 

 
 
Figure 20 Information model for the hippocampal cortices. Columns in the PHC and PRC have receptive 
fields which are internal activity of groups of cortical columns that have tended to expand their receptive 
fields at the same time in the past. One cortical column may appear in the receptive fields of a number of 
PHC or PRC columns. An output from the bottom layer of one of these PHC and PRC columns encourages 
receptive field expansion in the cortical columns that form its receptive field. However, to produce a 
bottom layer output, a PHC or PRC column requires both strong receptive field detection and an input from 
ERC columns. Such an ERC input encourages PHC or PRC output, with receptive field expansion if 
necessary. Similarly, columns in the ERC have receptive fields which are internal activity of groups of 
PHC and PRC columns that have tended to expand their receptive fields at the same time in the past and 
require both strong receptive field detection and input from CA1 pyramidals to generate an output back to 
the PHC and PRC columns that form their receptive fields. CA1 pyramidals, CA3 pyramidals and granule 
cells all have receptive fields which are internal activity of groups of EC columns that have tended to 
expand their receptive fields at the same time in the past 
 

The connectivity within the hippocampus proper is illustrated in figure 21. CA1 
pyramidals and CA3 pyramidals all have receptive fields which are groups of ERC 
columns that tend to have expanded their receptive fields at the same time in the past. 
Granule cells have similar receptive fields, but poorly focussed so that they correspond 
more with groups of ERC columns that tend to be active at similar times in the past. The 
degree of input activity from the ERC indicates the degree of familiarity in the current 
sensory input state to the cortex. If there is a high level of such input activity across all 
cortical areas, there is a high degree of granule cell activity. This high level of granule 
cell activity means that inhibition of CA3 pyramidals is predominant and there is no CA3 
activity and therefore no CA1 activity and no cortical receptive field expansions. If there 
is a degree of novelty in the current sensory input state to the cortex, some of the ERC 
input will be lower. Lower granule cell activity allows development of some CA3 
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pyramidal activity. The internal feedback within CA3 means that activity tends to 
develop in a group of CA3 pyramidals corresponding with large groups of cortical 
columns that have strong internal activity and also have tended to expand their receptive 
fields at the same time in the past. Direct inputs from granule cells encourage CA3 
pyramidal receptive field expansion if required. 
 

 
 
Figure 21 Connectivity within the hippocampus proper. CA1 pyramidals, CA3 pyramidals and 
dentate gyrus granule cells all have receptive fields that are groups of ERC columns that tend to 
expand their receptive fields at the same time. However, the CA1 pyramidals have sharply 
focussed receptive fields, CA3 pyramidals less sharply focussed, and granule cells relatively 
poorly focussed. There are two positive feedback loops: Each CA3 pyramidal excites a large 
number of other CA3 pyramidals, granule cells excite mossy cells and mossy cells excite granule 
cells. The two positive feedback loops are linked: CA3 pyramidals exciting mossy cells; granule 
cells excite a small number of CA3 pyramidals and (via CA3 interneurons) inhibit a much wider 
range of CA3 pyramidals. CA3 pyramidals target CA1 pyramidals 
 

The projections from CA3 pyramidals to mossy cells mean that as CA3 pyramidal 
activity increases, granule cell activity will increase. Increasing granule cell activity will 
eventually reach a level where CA3 interneuron activity will cut off further increases in 
CA3 pyramidal activity. The lower the level of input from the ERC to granule cells, the 
higher the eventual level of activity in CA3 pyramidals. In other words, the degree of 
CA3 pyramidal activity will be proportional to the degree of novelty in the current 
sensory input state to the cortex. 

The outputs of CA3 pyramidals target CA1 pyramidals with similar receptive fields. 
These outputs encourage CA1 pyramidal outputs, with receptive field expansion if 
required. CA3 activity is also communicated to the mammillary bodies. The mammillary 
bodies indicate to the anterior thalamus when the feedback competition within CA3 has 
settled down, and the anterior thalamus encourages CA1 outputs. To produce an output, a 
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CA1 pyramidal therefore requires inputs from the ERC indicating receptive field 
detection, inputs from CA1 pyramidals indicating that a similar receptive field has won 
the competition for receptive field expansion and inputs from the anterior thalamus 
indicating that CA1 pyramidal activity has stabilized. 

An output from a CA1 pyramidal triggers a cascade of activity and receptive field 
expansion through the ERC, the PHC and PRC to the cortical columns appropriate for 
receptive field expansion. These receptive field expansions bring the overall level of 
cortical activity up to the minimum level required to generate a wide enough range of 
behavioural recommendations to support a high integrity behaviour selection. 

Receptive field expansions by granule cells are unguided. Hence they are poorly 
focussed on groups of columns that expanded their receptive fields at similar times in the 
past. However, these granule cells provide receptive field expansion guidance to CA3 
pyramidals, which therefore have more sharply focussed receptive fields. CA1 
pyramidals have receptive field expansions guided by CA3 pyramidals and therefore 
have the most sharply focussed receptive fields, appropriate for guiding the cortex. 

The amygdala plays a role in emotion (Anderson and Phelps 1997; Whalen 1998). 
The information model for the role of the amygdala within the hippocampal system is 
that in emotional situations it increases the level of signals driving receptive field 
expansion in certain cortical areas, in particular those areas detecting receptive fields that 
discriminate between different general situations. 

At a particular location, there will be a relatively constant surrounding sensory 
environment. As a result, the large group of cortical columns activated in response to this 
environment will have tended to expand their receptive fields at the same time in the past. 
Many of the receptive fields in the hippocampal system will therefore correspond with 
particular locations, leading to the existence of the observed place fields in the higher 
levels of the hippocampal system (Fyhn et al. 2004; Leutgeb et al. 2004). 

In order to support indirect activation on the basis of receptive field expansion 
shortly after currently active columns, the simultaneous activity of hippocampal system 
neurons with receptive fields corresponding with different large groups of cortical 
columns that have expanded their receptive fields at a sequence of points in time will be 
necessary. For example, a sequence of place fields must be maintained active during 
physical movement. These different hippocampal receptive field detections must only 
interact in a controlled fashion, and their separation is managed by the theta frequency in 
the EEG. 

This use of the theta frequency to prevent interaction between different neural 
populations has some similarities with the proposal of Hasselmo et al. (2002) that 
different functions (learning and retrieval of earlier learning) are supported by activity in 
different phases of the theta cycle. However, the recommendation architecture 
information model is somewhat more consistent with the observations that the phase of 
the theta modulation shifts in a regular fashion across place fields (O’Keefe and Recce 
1993). 
 
5.7 Structure of the Cerebellum 
The cerebellum has an outer sheet of tissue surrounding a body of white matter (i.e. 
axons) and a core of nuclei. The sheet has three major layers. The innermost layer is 
made up of very large numbers of granule cells. The middle layer is made up of Purkinje 
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cells. The outer layer is made up of the dendritic trees of the purkinje cells, penetrated by 
the axons of the granule cells. 

One major source of excitatory inputs to the cerebellum is inputs containing motor 
information derived from the motor cortex and the spinal cord, via a nucleus called the 
inferior olive. These inputs target both the cerebellar nuclei and Purkinje cells. One input 
from the inferior olive targets a small set of Purkinje cells, and one Purkinje cell receives 
inputs from only one inferior olive input. A second source of excitatory inputs to the 
cerebellum is inputs containing sensory information derived from the cortex, via a 
structure called the pons. These inputs target both the cerebellar nuclei and granule cells. 

Purkinje cells receive very large numbers of excitatory inputs from granule cells, 
each input very weak. The single axon from the inferior olive that targets a Purkije cell 
makes multiple synapses and strongly excites the cell. Purkinje cells make inhibitory 
connections on to cells in the cerebellar nuclei. 

Excitatory outputs from the cerebellar nuclei target both the spinal cord through the 
brain stem and the thalamus. 
 

 
 
Figure 22 Information model for the cerebellum. A Purkinje cell corresponds with a “next behaviour”. It 
receives an input containing motor information indicating that its preceding behaviour has taken place. It 
also receives inputs containing sensory information. Sensory information corresponding with completion of 
its “next behaviour” is weak compared with any other sensory input. Hence a Purkinje cell will be active 
from when its preceding behaviour is indicated until the completion of its own behaviour is indicated. 
Cerebellar nuclei cells correspond with different behaviours, and a Purkinje cell inhibits all except its 
corresponding next behaviour 
 
5.8 Information Model for the Cerebellum 
The information model for the cerebellum is rapid and accurate implementation of a 
frequently used sequence of behaviours. The way this information model is partitioned 
between different parts of the cerebellum is illustrated in figure 22. The next step in a 
sequence is instantiated by a cerebellar nucleus cell and by a Purkinje cell. The Purkinje 
cell receives an excitatory input from the inferior olive indicating that the behaviour 
preceding its corresponding behaviour has occurred and excitatory inputs indicating the 
presence of a wide range of sensory circumstances. However, the weights of inputs 
indicating the sensory circumstances that follow the performance of its corresponding 
behaviour are weak. The Purkinje cell inhibits all cerebellar nuclei cells except the one 
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corresponding with its own behaviour. Hence when the programmed preceding behaviour 
occurs and the sensory inputs are not consistent with completion of its programmed 
behaviour, the Purkinje inhibits all except its programmed behaviour. Once the sensory 
inputs are consistent with completion of its behaviour, the Purkinje cell outputs cease. At 
the start of learning, a Purkinje has inputs from a very wide range of sensory 
circumstances, but during learning the inputs that are present soon after it produces an 
output are weakened by the long-term depression (LTD) mechanism (Linden 2003). 

Outputs from the cerebellar nuclei drive the next behaviour. For sequences of  motor 
behaviours, these outputs can go directly to the spinal cord via the brain stem. For 
cognitive behaviours only involving releases of information within the cortex, outputs go 
to the thalamus. 

Note that a behaviour sequence programmed in the cerebellum biases behaviour 
acceptance in favour of a series of types of behaviour, but the actual behaviour at each 
point will be the recommendation of the type that is most strongly recommended across 
the currently active cortical column population. At each point in the sequence, a different 
column populationwill be active as a result of the previous step in the sequence. Hence a 
sequence could proceed even with damage to the cerebellum because all the 
recommendation strengths will be in place, but it will be slower and more prone to errors. 
This is consistent with observations that cerebellar damage results in a generalized 
tendency towards poorer cognitive performance rather than severe specific deficits 
(Bracke-Tolkmitt et al. 1989). 
 
6 Modelling of Memory and Learning Phenomena 
There are a number of types of information recorded in different parts of the brain that 
are relevant to memory and learning. These information types are summarized in Table 1, 
along with the ways in which the information changes and the physiological instantiation 
of the information and the change mechanisms.  
 
6.1 Receptive Fields Stability and Memory 
In general the receptive field of a column can expand slightly with learning but does not 
contract or make major shifts. This relative stability of receptive fields and their sets of 
associated behavioural recommendations is the critical factor supporting many observed 
memory phenomena. If a receptive field is detected within the current sensory input, its 
associated behavioural recommendations have a high probability of being currently 
relevant. However, because of receptive field stability, some additional receptive fields 
that are not detected but can be identified also have a reasonable probability of having 
relevant behavioural recommendations. 

For example, suppose that the receptive field of a column is not being detected and 
the column is therefore inactive, but the column was recently active at the same time as a 
number of the columns that are currently active. There is a reasonable probability that the 
recommendations associated with that column could be relevant. Similarly, if a column is 
inactive, but has often been active in the past at the same time as a number of the 
columns that are currently active, again its recommendations could be relevant. Finally, if 
a column is inactive, but it expanded its receptive field at the same time in the past as a 
number of currently active columns, its recommendations could also be relevant. 
Furthermore, the behaviourally relevant past activity of the inactive column could be at 
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the same time as just before or just after the past activity of currently active columns. 
There is therefore potential behavioural value in indirect activation of columns on the 
basis of various types of past activity that is temporally correlated activity with the past 
activity of currently active columns. Such indirectly activated columns could in turn 
indirectly activate further columns on the basis of past temporally correlated activity and 
so on. An indirect activation behaviour applied to an already active column would have 
the effect of prolonging its activity. 
 

Table 1. Different types of information that support memory and learning in the brain. The major types are receptive fields in 
the cortex that record similarity circumstances, recommendation weights in the basal ganglia that associate receptive field 
detections with behaviours, and behaviour sequences in the cerebellum that associate behaviours with frequent next 
behaviours. Many of the memory relevant behaviours and next behaviours recorded in the cerebellum are indirect activation 
behaviours acting on cortical columns. 

 
Information type Changes with time Physiological instantiation 

of information 
Physiological instantiation 
of changes 

 
Receptive fields 
Receptive field detecting 
presence of  a type of 
sensory circumstance 

Columns in sensory cortices 

Receptive field detecting 
activity of a group of cortical 
columns with frequent past 
temporally correlated 
activity 

Columns in anterior 
temporal cortices 

Receptive field detecting 
activity of a group of cortical 
columns with past 
temporally correlated 
receptive field expansion 

 
 
Slightly expands IF only a 
slight expansion is needed to 
result in current detection 
AND either the total number 
of receptive field detections 
is low or contradictory 
reward feedback has 
occurred in the past 
following activation of 
currently active group of 
columns 

Columns in cortices 
associated with the 
hippocampal system 

 
 
 
 
LTP mechanism operating 
on pyramidal neurons within 
the changing column to add 
conditions to neuron 
receptive field definition 

 
Recommendation weights 
Indirect activation of 
receptive fields on the basis 
of past temporally correlated 
activation 

Starts off high, initially 
(minutes) decays rapidly, 
then (hours and days) more 
slowly. Decays more slowly 
if repeated or if an indirect 
activation is followed by a 
reward 

Weights of connections from 
columns in the anterior 
temporal cortex into the 
basal ganglia 

Indirect activation of 
receptive fields on the basis 
of past temporally correlated 
receptive field expansion 

Starts off high, initially 
(hours and days) decays 
slowly, then (weeks and 
months) more slowly. 
Decays more slowly or 
increases if an indirect 
activation is followed by a 
reward 

Weights of connections from 
columns in the cortices 
associated with the 
hippocampal system into the 
basal ganglia 

 
 
 
 
 
 
Inputs from nucleus 
accumbens drive synaptic 
weight changes in the basal 
ganglia 

 
Behaviour sequences 
Bias in favour of one 
behaviour type whenever a 
behaviour of another type 
has just been completed 

Increases with repetition of 
sequence if followed by 
positive reward 

Cerebellar purkinje neuron 
corresponding with the first 
behaviour that inhibits all 
except second behaviour 

LTD mechanism reducing 
synaptic weights of sensory 
circumstances corresponding 
with completion of first 
behaviour 
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However, if such indirect activations took place without any limitations, there would 

be large numbers of columns indirectly activated in all situations. In some situations, only 
the directly activated columns are necessary to select appropriate behaviour and 
indirectly activated columns could reduce the appropriateness of the selection. Hence 
indirect activations must themselves be behaviours that are recommended by currently 
active columns, with competitions determining whether such recommendations are 
accepted. 
 
6.2 Development and Evolution of Indirect Activation Recommendation Strengths 
If two columns are active at the same time, there is a chance that an indirect activation 
strength would be useful in the future, but the highest probability of being useful is soon 
after the simultaneous activity. However, if the simultaneous activity occurs repeatedly, 
there is a higher chance that an indirect activation would be useful further in the future. If 
an indirect activation strength is utilized and is followed by a reward, there is an even 
higher chance of future value. 

Hence if two columns are active at the same time, they will immediately acquire 
recommendation strengths in favour of activating each other in the future, but this 
strength will decay rapidly with time. If the simultaneous activity often occurs, the 
recommendation strength will decay more slowly. If the recommendation strength results 
in an indirect activation and the activation is followed by a positive reward, the weight 
will be increased and decay will be much slower. 

If two columns expand their receptive fields at the same time, there is a much higher 
probability of future behavioural relevance than for simple simultaneous activity. The 
initial indirect activation recommendation strengths will therefore decay much more 
slowly. Reward feedback following use of a recommendation strength will again increase 
and stabilize the weight. Frequent use of a recommendation weight in favour of activation 
on the basis of simultaneous receptive field expansion would mean that the columns are 
often active at similar times, and indirect activation weight on that basis would develop 
which could even become stronger than the original weight based on receptive field 
expansion. 
 
6.3 Semantic Memory 
The primary information mechanism supporting semantic memory is indirect activation 
of cortical columns on the basis of frequent past simultaneous activity. This will be 
illustrated by the example of learning the meaning of the word “bird”. Visual experiences 
of different birds result in receptive field detections in column arrays that discriminate 
between visual elements, between visual features and between visual objects (as in figure 
4). Auditory experiences of the spoken word “bird” result in receptive field detections in 
column arrays that discriminate between phonemes and between words (as in figure 4). 
Because there are some similarities between different birds, there are some columns in 
the  visual objects array in figure 4 that tend to detect their receptive fields relatively 
frequently in different bird instances. There will be less consistency in the  visual features 
array and even less in the  visual elements array. Similarly, there will be some columns in 
the word array that frequently tend to detect their receptive fields in different auditory 
experiences of the word “bird”. 
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Figure 23 Information model for semantic memory. The column arrays that discriminate between visual 
objects and that discriminate between auditory words (as shown in figure 4) are illustrated for four 
situations. In each situation, a visual instance of a bird and auditory instance of the word “bird” are 
experienced simultaneously, resulting in activation of the columns that detect their receptive fields. 
Although the set of columns activated is different for each visual and each auditory experience, the 
similarity between the experiences means that some receptive fields tend to be detected relatively 
frequently in many visual bird instances and in many auditory “bird” instances, as indicated by the grey 
arrows. As a result, there is a set of visual columns that are often active at the same time as a set of auditory 
columns. The set of auditory columns therefore tend to acquire recommendation strengths in favour of 
indirect activation of the set of visual columns and vice versa. An instance of the word “bird” will contain a 
significant proportion of the auditory set, and there will therefore be significant total recommendation 
strength in favour of activating the visual set. The experience of activation of this visual set will be as if a 
visual bird instance that is an average of past experience were perceived, except that the columns close to 
visual input (i.e. arrays visual elements and  visual features in figure 4) will not be activated, and the 
experience will therefore not be a visual hallucination. 
 

In figure 23, the column activations in arrays  visual objects and  words are 
illustrated for a number of experiences a bird was perceived visually at the same time as 
the word “bird” was heard. In each visual experience, a different group of columns was 
activated, but because of the similarities between birds, there are some columns that tend 
to detect their receptive fields relatively frequently in different instances. Similarly, 
although a different group of auditory columns detect their receptive fields in each “bird” 
experience, some columns are active relatively frequently. There is therefore a set of  
visual object columns that are frequently active at the same time as a set of  word 
columns. These two sets of columns will acquire recommendation strengths in favour of 
indirectly activating each other. 

In any future experience of the word “bird”, a significant subset of the auditory set 
will be activated, and this subset will have a strong total recommendation strength in 
favour of indirect activation of the visual set. This indirect activation will be experienced 
as if a bird that was an average over past experiences were experienced. Because there is 
less consistency in activation at the  visual features and  visual elements levels, the 
experience will not be a visual hallucination; it will be confined to higher receptive field 
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complexities. The activated  visual object columns will have all their recommendation 
strengths, including relatively strong bird appropriate total recommendation strengths. 

At a deeper level of description, the information model for this type of indirect 
activation is illustrated in figure 24. The indirect activation behaviour must win a 
competition for selection in the basal ganglia, and the behaviour must be implemented by 
the thalamus. Columns with receptive fields corresponding with groups of  words 
auditory columns that are often active at the same time are required. These are the linking 
columns in figure 24. These linking columns target visual columns that are often active at 
the same time, but by connections on to basal dendrites of pyramidal neurons in those 
columns rather than on to the apical dendrites that define receptive fields. 

 

 
 
Figure 24 Semantic memory for word meanings supported by management of indirect activation on the 
basis of frequent past simultaneous activation. The linking columns have receptive fields corresponding 
with groups of auditory columns that are often active at the same time. The linking columns excite visual 
columns that are often active at the same time but not as elements in their regular receptive fields. Auditory 
columns and other columns including the linking columns target the basal ganglia components 
corresponding with the behaviour of indirect activation on the basis of frequent past simultaneous activity. 
These connections into these components have different synaptic weights which correspond with 
recommendation strengths in favour of the indirect activation behaviour. If the behaviour is accepted by the 
basal ganglia, the outputs from the linking columns are released by the thalamus to drive visual column 
activations. Note that the outputs from the linking columns recommending the indirect activation behaviour 
to the basal ganglia are from a different column layer to the outputs to the visual columns. 
 

The receptive fields activated in the experience of a semantic memory will be those 
active during sensory or motor processing, and one receptive field will be present in 
instances of many different categories of object. Neuroimaging is consistent with this 
picture (e.g. Martin 2007). However, the activation of a semantic memory requires a 
cortical area in which columns have receptive fields corresponding with groups of 
columns elsewhere that are often active at the same time. Damage to this area would 
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result in general loss of semantic memory capability. Damage to the most anterior 
portions of the temporal cortices results in this type of general loss of semantic memory 
capabilities (Rogers et al. 2006). 
 
6.4 Working Memory 
In the recommendation architecture model, the working memory of an object is simple 
the activation of the columns corresponding with the semantic memory of the object. The 
primary information mechanism supporting working memory is frequency modulation of 
receptive field detections within different sources. The cognitive significance of the 
mechanism can be understood by reference to figure 25. Suppose there are three objects 
in the visual field, a dog, a cat and a tree, with the cat up the tree and the dog barking at 
the cat. The appropriate behaviour in response to the group (e.g. chasing the dog away) 
needs information about each of the objects that must be derived from receptive fields 
detected within those objects. For example, relevant information could include whether 
the cat is my pet, whether the dog looks fierce and the height of the tree. Receptive fields 
are detected within the three objects in the  objects array in figure 25, but detections must 
be kept separate in this array (e.g. must not have information indicating a barking cat, or 
a fierce tree, etc.). However, the information derived from the three objects must be 
integrated in the  groups array to activate columns with appropriate recommendation 
strengths. 
 

 
 
Figure 25 Cognitive significance of frequency modulation in maintaining independent populations of active 
cortical columns. Two arrays of visual columns are illustrated, one at a level of receptive field complexity 
effective for discriminating between objects, the other groups of objects. The receptive fields that 
discriminate between groups of objects need inputs from receptive fields that discriminate between objects. 
The modulation mechanism makes it possible for attention to be shifted to three different objects with 
column populations in response to the different objects being maintained active simultaneously but without 
interaction in the  objects array until all the members of the group have been attended. The outputs from the 
three populations are then brought into the same phase and released to the  groups array, where columns 
with recommendation strengths appropriate for responding to the group of objects then detect their 
receptive fields. 
 

The frequency modulation mechanism makes it possible to place a different phase of 
modulation on the receptive fields detected within the dog, cat and tree. As a result, the 
receptive field detections are kept independent, even though they are all active in the 
same cortical array, potentially in some of the same columns or even some of the same 
pyramidal neurons. When all three populations are active, their outputs can be brought 
into the same phase and released to the  groups array where receptive fields within the 
group are detected. 

This type of mechanism supports the observed working memory limits on the 
number of different objects that can be retained in working memory at the same time. 
Cowan (2000) suggested a limit of approximately four items, based on performance 
discontinuities such as errorless performance in immediate recall when the number of 
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items is less than four and sharp increases in errors for larger numbers. In information 
model terms, the primary limit is defined by the number of active column populations 
which can be maintained independently. This number is approximately the ratio of the 
period of the modulation frequency to the postsynaptic potential decay constant. If the 
gamma frequency in the EEG is interpreted at the modulation signal on the basis of its 
association with attention (Muller et al. 2000), a 40Hz signal has a period of 25ms. With 
a postsynaptic decay constant of 10 ms (Fan et al. 2005), this would allow of the order of 
2–3 independent column populations. The actual number would depend upon the gamma 
band frequency (which can vary from 20 to 50Hz) and the shape of the postsynaptic 
potential decay curve. 

The content of an item in working memory is defined by a group of columnar 
receptive fields in a cortical area that are active at the same phase of frequency 
modulation. The column receptive fields are the same fields that record the information 
which makes up the content of semantic and episodic memories. This is consistent with 
the observations that there is considerable overlap in the cortical areas active during 
working memory and declarative memory tasks (Cabeza et al. 2002). 

At a psychological level, the requirement is to keep information relevant to different 
objects active simultaneously, without interference. In particular, it is sometimes 
important to allow processing of a new sensory object while preserving information about 
an earlier object. However, it will not in general be necessary to keep information on the 
earlier object active at all levels of receptive field complexity, only at the levels with 
relevant behavioural recommendation strengths. In addition, there is a biological cost to 
maintaining information active, both the direct cost of the activation and the indirect cost 
of occupying resources that therefore cannot be used for other purposes. Hence 
maintaining information active in a specific cortical area must be a behaviour that will 
compete with other alternative behaviours for acceptance. 

This competition for acceptance will depend upon what else is already active in 
different cortical areas. There is therefore a requirement for a cortical area with receptive 
fields corresponding with, for example, the number of different groups of columns in 
another area that are active with different phases of frequency modulation. Damage to 
this area would result in general deterioration of working memory capabilities. 
Neuroimaging indicates higher activity in Brodmann’s area 40 in the left parietal cortex 
during working memory tasks (Cabeza et al. 2002), and a patient with damage to the left 
parietal lobe showed a deficit in working memory but not declarative memory 
(Warrington and Shallice 1969; Shallice andWarrington 1970). 

If we are asked to imagine a number of different objects, keeping the images 
separate, the maximum number is 3–4, consistent with Cowan’s (2000) limit. However, 
objects can be remembered as groups, and it is possible to remember objects as both 
visual and verbal terms. Cycling between these representations makes it possible to 
increase the apparent size of working memory, hence the “magic number” of seven 
(Miller 1956). 

This model has some analogies with the proposal that different working memories 
are encoded as a different high frequency (40Hz) subcycle of a low frequency (10Hz) 
oscillation (Lisman and Idiart 1995). However, their model leads to a working memory 
content of seven, which is significantly higher that the actual experimental number. 
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6.5 Episodic Memory 
The primary informationmechanism supporting episodicmemory is indirect activation of 
cortical columns on the basis of past simultaneous receptive field expansion. This will be 
illustrated by the example of recalling the news of the terrorist attack exploding a bomb 
in a bar in Bali. The state of column activation at some point while television news of the 
bombing was being viewed is shown in figure 26. 

In the figure, attention is paid to a sequence of visual objects on the television screen. 
Different sets of cortical columns in the  objects array detect their receptive fields within 
each object, and several sets corresponding with different objects are maintained active 
simultaneously at different phases of frequency modulation. Outputs from the different 
sets are then synchronized and released to the  groups array where a set of columns detect 
receptive fields. The outputs from several sets of columns in the  groups array are in due 
course synchronized and released to the groups of groups array. 
 

 
 
Figure 26 Conceptual representation of the cortical columns activated at some point during viewing of 
television news of the first Bali bombing. The pictured activation was built up by a series of steps. Several 
objects on the television screen were sequentially the focus of attention, resulting in separate activations in 
the  objects array, at different phases of frequency modulation. Outputs from these separate activations 
were synchronized to the same phase and released to the  groups array, an active column population was 
generated in that array at a specific phase of frequency modulation, and the populations in the  objects array 
were extinguished. More visual objects generated activations in the  objects array, their outputs were again 
synchronized, and a second independent population generated in the  groups array at a different modulation 
phase from the first. In due course, the outputs from several independent populations in the  groups array 
were synchronized to the same phase and released to the  groups of groups array where a column 
population was activated. 
 

There is relatively little novelty to the individual visual objects, which might include 
objects typical of Bali, of bars and of explosion aftermath, all of which are separately 
familiar. Hence little receptive field expansion is required in the  objects array to achieve 
the minimum required number of column receptive field detections. However, at the  
groups level there will be rather more novelty, and hence a significant degree of receptive 
field expansion will be required, while at the  groups of groups level there will be 
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significant novelty, and substantial numbers of receptive field expansions will be 
required. 

Now suppose that later the words “Bali” and “bombing” are heard. By the semantic 
memory mechanism, sets of columns will be indirectly activated in the  visual objects 
array corresponding with the visual experiences that have often occurred at the same time 
as the two words. The outputs from these sets would be synchronized and released to the  
groups array where they would generate a set of active columns. However, the overlap 
between the resultant column populations and the columns active in figure 26 will be 
slight. 

If now the recommendations of the currently active columns in favour of indirect 
activation of other columns on the basis of past simultaneous receptive field expansion 
are accepted, a secondary population will be activated. This secondary population will 
contain columns that have expanded their receptive fields at the same time in the past as a 
significant subset of the columns activated in response to the words. A tertiary population 
could then be generated on the same basis from the secondary population. This sequence 
of indirect activations will tend to result in a population in which all columns tend to have 
expanded their receptive fields at the same time in the past. If the initial words are well 
chosen the final population will be a good approximation to the population active at the 
time of the original experience, but without the activations in the earlier cortical arrays ( 
visual features and visual elements) in which the degree of receptive field expansion will 
be minimal. Nevertheless, this reconstructed population will have appropriate 
recommendation strengths in favour of describingwhat was seen. In other words, an 
episodic memory of the original experience has been constructed. 

Column recommendation strengths in favour of activating other columns that 
expanded their receptive fields just before or just after expansion in the column provide 
the ability to move through the sequence of experiences to reconstruct an episode. 

As discussed earlier, cortical columns in the parahippocampal, perirhinal and 
entorhinal cortices and pyramidal neurons in CA1 and CA3 define receptive fields 
corresponding with groups of cortical columns that have tended to expand their receptive 
fields at the same time. These receptive field definitions result from the primary resource 
management role of the hippocampal system. Hence these hippocampal system structures 
can be used to reconstruct episodic memories, with the restriction that outputs that drive 
receptive field expansions cannot be used without generating unnecessary and 
undesirable receptive field changes. The outputs to drive episodic memory recall must 
therefore come from different layers in the PHC, PRC and EC columns from those layers 
driving receptive field changes. 

Note that if an episode is often recalled, there may be sufficient recommendation 
strengths acquired on the basis of frequent past simultaneous activity for that mechanism 
to take over from the receptive field expansion-based mechanism. This accounts for the 
observations that hippocampal damage has the largest effect on autobiographical 
memories and less effect on memories of personal information, notable public 
personalities and notable public events that may have been frequently recalled (Nadel and 
Moscovitch 1997). 

This model of episodic memory recall involves a specific sequence of cortical 
behaviours: generation of activations in response to words; a series of indirect activations 
on the basis of past simultaneous receptive field expansion; evolution of the end 
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population on the basis of slightly later receptive field expansion; and generation of 
speech driven by the final population. This sequence must be learned and later performed 
rapidly and effectively. This sequence will therefore be instantiated in the cerebellum. 

Episodic memory thus requires activity in cortical areas with receptive fields that can 
discriminate between different types of groups and different types of groups of  groups of 
sensory objects. These types of receptive fields are polymodal and therefore located in 
the frontal cortex. Episodic memory will also require activity in the higher visual areas to 
provide receptive fields corresponding with individual objects and in the hippocampal 
system to manage the activation of the appropriate receptive fields in all the other cortical 
areas. The hippocampal activity would be expected to be targetted at specific groups of 
cortical columns and therefore smaller. Because episodic memory retrieval requires a 
specific sequence of indirect activation behaviours, cerebellar activity is therefore to be 
expected. Functional neuroimaging of the brain during episodic memory recall is 
consistent with this picture, with strong activity in the prefrontal cortex (Fletcher et al. 
1997) and in visual and visual association areas (Addis et al. 2007); somewhat weaker 
activity in the hippocampal system (Fletcher et al. 1997); and strong cerebellar activity 
(Fliessbach et al. 2007). 
 
6.6 Priming Memory 
The primary information mechanism supporting priming memory is indirect activation of 
cortical columns on the basis of recent simultaneous receptive field detection. This will 
be illustrated by the example of identification of pictures following subliminal 
presentation. In one experiment (Badgaiyan 2000), subjects are shown a number of line 
drawings, studying each for 3 s. A few minutes after completing this study phase, the 
subjects are shown a series of pictures, each for 16 ms, and asked to identify them. The 
subjects had an 82% success rate for studied pictures, but only a 5% success rate for 
identifying new unstudied pictures. 
 

 
 
Figure 27 Column activations during study and test phases of a priming experiment. The study phase 
presentation results in a substantial set of column activations. A later test presentation is very brief, and 
only a small subset of the columns activated at study is activated. However, these columns have significant 
recommendation strengths in favour of activation of the other columns in the full set, on the basis of recent 
simultaneous activity. 
 

As illustrated conceptually in figure 27, the study presentation results in activation of 
a normal sized set of columns. The very brief test presentation results on activation of a 
small subset of the original set that in general does not have enough total 
recommendation strength in favour of naming the picture. However, if the picture has 
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been recently studied, the columns in the subset all have strong recommendation 
strengths in favour of activation of the other columns in the full set on the basis of recent 
simultaneous activity. The resultant larger set of columns often has enough total 
recommendation strength to identify the picture. 

Indirect activations based on recent simultaneous activity decay fairly rapidly un- 
less repeated or used in a situation that result in reward feedback. Priming memory is the 
situation in which neither of these factors is present. Semantic memory can start from the 
same initial weights, but repetition and reward feedback strengthens and stabilizes the 
weights long term. 
 
6.7 Procedural Memory 
The primary information mechanism supporting procedural memory is adjustment of the 
behavioural recommendation weights of receptive field detections on the basis of reward 
feedback. In learning a new skill, if previously existing receptive fields have enough 
discrimination to distinguish between situations in which different skilled behaviours are 
appropriate, the skill could be learned by adjustment to recommendation weights in the 
basal ganglia without changes to cortical receptive fields. If the sensory environment in 
which the skill is practiced is novel, some receptive field changes will be required. The 
model thus accounts for the observations that patients who have lost the ability to create 
new declarative memories can nevertheless acquire simple mechanical skills (Corkin 
1968). 

The symptoms of a number of disorders associated with the basal ganglia, such as 
Parkinson’s and Huntingdon’s syndromes, can be understood in terms of the information 
model for the basal ganglia shown in figure 16. 

The symptoms of Parkinson’s disease include difficulty with voluntary movement 
and with initiation of movement and in general slowness of movement. The observed 
physical deficit (Jankovic 2007) is degeneration of dopaminergic neurons in the SNc. In 
the information model for the basal ganglia, this will mean that the loop that ensures that 
one and only one behaviour is selected in response to each sensory input state is 
unbalanced. The lack of dopamine will result in increased activity in the indirect pathway 
(figure 16), leading to no behaviour being selected. 

The major symptom of Huntingdon’s disease is the intrusion of irregular, 
unpredictable, purposeless, rapid movements that flow randomly from one body part to 
another (Berardelli et al. 1999). The observed physical deficit is loss of striatal cells that 
project into the indirect pathway (Starr et al. 2008). In the information model for the 
basal ganglia, this can be understood as reducing the inhibition of all behaviours. Any 
individual receptive field detection by the cortex will recommend a wide range of 
behaviours. The weakening of the selection management leads to the selection of 
multiple behaviours. The motor system can only implement one or a consistent set of 
behaviours, but the ultimate selection will be fairly random. 
 
7 Mapping Between Different Levels of Description 
As an illustration of how the recommendation architecture model makes it possible to 
describe the same phenomenon consistently on different levels of detail from psychology 
to physiology, consider again an example of episodic memory. 
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At the highest level, the causal description begins with a subject with a range of 
sensory inputs including the verbal input “What do you remember about your first day at 
your current job?” In the situation of the subject, the verbal input causes the subject to 
give priority to answering the enquiry over other possible demands. This priority causes 
attention to be paid to the verbal input. The verbal input causes a sequence of internal 
brain activities. The end point of these brain activities causes a verbal response describing 
the suggested event.  

At a more detailed level, a range of sensory input is reaching the subject, including 
auditory input of the spoken words. A range of receptive fields are detected by the cortex 
within the words and other sensory inputs, each with a range of behavioural 
recommendation weights into the basal ganglia. There is substantial total 
recommendation weight in favour of paying attention to the auditory inputs, and as a 
result, the auditory information is released by the thalamus for more detailed receptive 
field detections by the cortex. More detailed cortical receptive fields detected within the 
word “remember” and receptive fields indirectly activated as a result have substantial 
recommendationweight in favour of an episodic memory behaviour. This weight is the 
current largest, and therefore a sequence of behaviours supporting episodic memory is 
activated in the cerebellum. This sequence drives indirect activation behaviours in the 
cortex, using information recorded in the hippocampal system, and favours acceptance of 
speech recommendationweights of the final population. 

At the next level of detail, the description of the complete end to end psychological 
process would be very lengthy. As in the physical sciences, understanding is based on 
establishing more detailed descriptions of key small segments of the overall high level 
process. 

One segment could be a description of the handling of the sequence of words making 
up the question. Receptive fields detected within the auditory input recommend a 
standard speech processing behavioural sequence recorded in the cerebellum. Such a 
behavioural sequence generates bias in favour of the weights of currently detected 
receptive fields in favour of the next behaviour in the sequence. The sequence of 
behaviours would be indirect activation of visual and associative receptive fields by the 
auditory receptive fields detected within a word, prolonging the indirectly activated 
population with a specific phase of frequency modulation, generating an indirectly 
activated population in response to a second word and prolonging it with a different 
phase of frequency modulation, and once several words have corresponding indirectly 
activated populations, bringing their outputs into the same modulation phase and 
releasing them to a cortical level detecting a higher level of receptive field complexity. 

A second segment would be to take the population indirectly activated at the higher 
level of receptive field complexity by the combination of words and drive a series of 
further indirect activations on the basis of simultaneous past receptive field expansion, 
using information recorded in the hippocampal system. Again, this segment would be a 
sequence of behaviours instantiated in the cerebellum. The segment would include 
releasing the outputs of the population to the hippocampal system, where columns would 
detect receptive fields if a significant proportion of the columns making up their receptive 
fields were active. The active hippocampal columns would then encourage activation of 
all the cortical columns defining their receptive field. Some cortical columns could 
appear in multiple activated hippocampal receptive fields, and such cortical columns 
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would be most likely to be activated. All the releases of column outputswould bemanaged 
by the basal ganglia and thalamus on the basis of active column recommendation 
weights, modulated by the bias placed on weights in favour of certain behavioural types 
by the behaviour sequence instantiated in the cerebellum. 

At an even deeper level, there could be descriptions of the processes for column 
receptive field detection, for behaviour selection through the basal ganglia and thalamus, 
for management of behaviour sequence through the cerebellum and for hippocampal 
system management of receptive field expansions. 

At a yet deeper level, descriptions would be in terms of neuron receptive field 
definition using LTP type mechanisms, neuron receptive field detection using leaky 
integration and frequency modulation. 

An even deeper level could describe synapses, neurotransmitters and ion channels 
supporting leaky integration at a higher level, and the changes to ion channels supporting 
LTP mechanisms. 

The model thus has the capability to map consistently all the way from psychology to 
the chemical processes underlying physiology. This consistent mapping means that it is 
possible to have confidence in the intermediate level descriptions (e.g. in terms of cortical 
columns) which are most critical for understanding the psychological phenomena. 
 
8 More Complex Cognitive Processes 
The focus of this chapter has been on memory and learning phenomena. However, in this 
section an outline will be provided of how the mechanisms discussed for memory and 
learning relate to major cognitive management systems such as attention and emotion, 
and how the mechanisms supportmore complex cognitive phenomena including 
imagination and creativity. 
 
8.1 Attention 
The attention function on a psychological level selects a subset of the currently available 
sensory information and favours that subset in the determination of behaviour. 
Unmodulated sensory input from the whole visual field enters the cortex via the 
thalamus. Because the inputs are unmodulated, they do not penetrate deeply into the 
visual cortex. Receptive field detection is mainly in V1, where receptive fields 
correspond with boundary elements in different boundaries within the visual field. Each 
such receptive field recommends focussing attention on the retinal area in a band 
perpendicular to the boundary element and on both of its sides as illustrated in figure 28. 

For a closed boundary, the recommendation strengths within the boundary from all 
the surrounding boundary elements will reinforce each other, and there will be a strong 
total recommendation strength in favour of the area within the boundary, in other words, 
an object in the visual field. 

The strongest such recommendation, totalled across all currently detected receptive 
fields, is accepted. This acceptance is implemented by placing a modulation on the 
sensory inputs within the corresponding closed boundary. The effect of the modulation is 
that receptive fields are detected deep into the visual cortex and beyond. These receptive 
field detections recommend behaviours appropriate to the visual object within the 
selected closed boundary. 
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Figure 28 Management of attention by boundary element detection in V1. In (i), a visual field is illustrated 
with one object. In (ii), some of the boundary element receptive fields detected in visual area V1 within the 
object illustrated in (i) are illustrated, along with the retinal area recommended for attention by one 
receptive field detection.Within a closed boundary, attention recommendations will reinforce each other, 
resulting in a strong overall recommendation in favour of attention on the area within the closed boundary. 
 

Receptive field detections within multiple objects can be retained active without 
interference with each other by modulating the detections at different phases of 
modulation as illustrated in figure 13. This support of multiple sets of receptive field 
detections supports working memory as discussed earlier. 

Analogous mechanisms support attention in auditory and propioceptic sensory 
processing. 
 
8.2 Emotion and Reward 
Different cortical areas detect receptive fields within different ranges of complexity. 
Because of the need to economize on resources, receptive field detections in any area 
recommend many different behaviours. However, as discussed earlier, there may be 
behavioural advantages in having areas that specialize in receptive fields effective in 
discriminating between circumstances in which different behaviours of a particular 
general type (e.g. food seeking, aggressive, avoidance, etc.) are appropriate. Sometimes 
the behavioural advantage of such areas may outweigh the extra resource cost. Such areas 
have the additional advantage that the relative probability of their behaviour type can be 
modulated. 

Emotions correspond with different general types of behaviour, and the presence of 
the emotion encourages its corresponding type. Anger encourages aggressive behaviour, 
fear encourages avoidance (i.e. fearful) behaviour, disgust encourages rejection 
behaviour, surprise encourages recording information and delaying behaviour, sadness 
encourages avoidance of behaviour because of radical change in circumstances, 
happiness encourages repetition of recent behaviours and hunger encourages food 
seeking behaviour, etc. 

Some cortical receptive field detections recommend such general types of behaviour. 
These recommendations are instantiated by connections to the amygdala and/or 
hypothalamus, with different weights. If the total recommendation weight in favour of a 
behaviour type is high enough, the amygdala and/or hypothalamus will be activated to 
release a neurotransmitter to targets in the cortex within areas that generate more specific 
behavioural recommendations of the general type. Such a neurotransmitter release 
corresponds with an emotional state and will have the effect of modulating the thresholds 
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of pyramidal neurons in the targetted areas. This modulation will result in much more 
activity recommending specific behaviours of the general type. 

Emotion signals generated by the amygdala and hypothalamus also target the 
striatum, where they influence the relative probability of a behaviour of their 
corresponding type being accepted. Thus, for example, the basolateral complex of the 
amygdala, which is associated with fear, projects strongly to both the striatum and the 
prefrontal cortex (Sah et al. 2003). 

Note that if a set of columns recommending an emotion are active at the same time 
as a set of cortical columns elsewhere in the cortex, the two sets are active at the same 
time and can therefore acquire recommendation strengths in favour of activating each 
other. At a psychological level, this means that, for example, the memory of an event 
may generate an emotion. 

Note also that the generation of a reward that modulates recent recommendation 
strengths is itself a behaviour that is in general recommended by cortical receptive field 
detections. If a set of columns are active at the same time as some reward recommending 
columns, the set may acquire recommendation strengths in favour of indirect activation 
of the reward columns. The circumstances in which a particular type of behaviour is 
appropriate will be a very complex combination of sensory inputs able to discriminate 
between subtle social differences. Reward discrimination in many cases also requires 
subtle discrimination between different social circumstances. The receptive field 
complexity for the two types of discrimination may be comparable, resulting in the same 
cortical area being associated with both types of behavioural recommendation. The 
orbitofrontal cortex does appear to be involved in both emotion and rewards (O’Doherty 
et al. 2001). 
 
8.3 Sleep  
A major role of sleep in the recommendation architecturemodel is the configuration of 
neural resources that are as appropriate as possible for learning in subsequent waking 
periods (Coward 1990, 2001). Recording of information in the brain occurs by creation of 
new synapses and by changes to synaptic weights. If new synaptic connections are 
needed, it would not be practical to create those synapses at the instant they were 
required. It is therefore necessary to create “provisional” synapses in advance, which can 
be utilized if appropriate during subsequent experience. Such provisional synapses could 
be between randomly selected pre- and postsynaptic neurons, but this would result in 
considerable resource expenditure on the creation of synapses which are not useful and 
which in some circumstances could reduce behavioural effectiveness (Coward 2001). 

One way to improve the probable effectiveness of provisional synapses is to utilize 
past experience. If two neurons have never in the past been active at the same time, the 
probability that a connection between them will be useful is low. Conversely, if two 
unconnected neurons have often been active at the same time in the past, the probability 
is higher. If the simultaneous activity is recent, the probability is even higher. The 
strategy is therefore to bias the creation of provisional synapses in favour of connections 
between neurons that have tended to be active at similar times in the past, with the recent 
past having the strongest weight. Provisional connectivity will also be required to support 
indirect activation on the basis of past temporally correlated activity, such as activity of 
one neuron at the same time as or shortly after another neuron. 
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Connectivity is required between cortical neurons and between cortical and 
hippocampal neurons to support declarative memory. Connectivity is also required 
between cortical neurons and basal ganglia and thalamic neurons, and within the basal 
ganglia and thalamus, to support procedural memory. Different stages of sleep may 
support different aspects of provisional connectivity creation, including extension of axon 
segments and building of synapses and connectivity in different brain structures. Partial 
reruns of past experience will be required to identify the best candidates for provisional 
connectivity. 

Consistent with the model, reruns of past patterns of neuron activity have been 
observed in both REM sleep (Pavlides and Winson 1989) and in slow wave sleep (SWS) 
(Lee andWilson 2002). There is some evidence that reruns of recent experience occur in 
SWS, with reruns of more remote experience in REM sleep (Hoffman and McNaughton 
2002). 

This model is radically different from consolidation models (Squire and Alvarez 
1995) in which memory information is initially recorded in the hippocampus and 
gradually over time transferred to the cortex. Such information transfers would be very 
complex, and modelling efforts have generally been limited to just the hippocampus (e.g. 
Redish and Touretzky, 1998). The resource configuration model does not require these 
complex information transfers, memories are fully defined in cortical information terms 
at the end of the few hundred millisecond period of the remembered experience. There 
may be chemical processes required to consolidate the memory (Tronson and Taylor 
2007), but the information content of the memory is not significantly changed or 
relocated. The hippocampus is only required in the future to identify the sets of cortical 
information associated with individual episodic memories. Furthermore, the rerun 
process is not indispensible for declarative memories, since random connectivity can 
support such memories with reduced resource effectiveness. The resource configuration 
model is therefore more consistent with the observation that substantial or complete 
suppression of REM sleep by various antidepressant drugs or by bilateral damage to the 
pons has no apparent effect on declarative memory (Vertes and Eastman 2000). 
 
8.4 Mental Image Manipulation 
Consider how a brain might be able to imagine the appearance of a currently viewed 
object as it would appear if viewed from a different angle. As an example, suppose that a 
subject is presented with an image of an object viewed from an unfamiliar angle and is 
asked to identify the object. The requirement is to be able to mentally rotate the current 
visual image to generate a mental image that is more recognizable. 

In the subject’s past experience, many different objects have been examined from 
many different angles. During these examinations, the cortical columns activated in 
response to viewing from one angle have been active shortly before or after the columns 
activated in response to viewing from a different angle. As a result, columns will have 
acquired recommendation strengths in favour of activating other columns on the basis of 
frequent past activity just before and just after the other columns. 

The behaviour of “mentally rotating” is therefore one of imposing a bias on the 
behavioural selection process in favour of column recommendations of indirect activation 
on the basis of frequent past activity just before and just after the other columns. Any one 
column will have been activated in the past in response to many different objects. There 
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will be a population of columns currently active in response to the visual image. The 
effect of this recommendation type will be activation of a population of columns, each of 
which has often been active in the past just before or after a number of these currently 
active columns. This indirectly activated (or secondary) populationwill be maintained 
active at a different phase of frequency modulation from the directly activated columns, 
to avoid meaningless mixing of information. 

The secondary population will therefore correspond with an estimate of what the 
object would look like from a different angle based on an average of many past 
experiences of viewing rotations of different objects. The recommendation strengths of 
this population in favour of naming an object will be accepted. This process is of course 
not guaranteed to work, since it depends upon the existence of reasonably frequent, 
relevant past experiences. 

A key point is that the brain does not “know about” rotations, but can implement 
processes based on indirect column activations. Certain processes generate results that are 
rewarded. For example, when initially a child is asked to imagine an object as it would be 
if rotated, various indirect activation processesmay be tried randomly. Once the 
appropriate indirect activation process is tried, the result will be rewarded, and the 
process will tend to be used again in the future if the word “rotated” is heard. 
 
8.5 Self-Awareness 
Consider a child who is learning his name, and suppose that name is Michael. The name 
is used on many occasions when his attention is being directed towards himself. When 
his attention is directed towards himself, cortical columns detect their receptive fields 
within visual information derived from looking at himself and within propioceptic 
information derived from his own body (“that’s Michael’s foot”). Other columns may be 
active recommending various emotions. In addition, the word “Michael” activates 
auditory column receptive fields. 

Over a period of time, there will be some columns (visual, propioceptic, polymodal, 
emotional, etc.) that are often active at the same time as a group of auditory columns 
often active when the word “Michael” is spoken. Hence the auditory columns will 
acquire recommendation strengths in favour of indirect activation of the visual, 
propioceptic, polymodal and emotional columns. The result is that the auditory columns 
activate an internal state that is a kind of average of Michael’s experiences at the times 
when his name has been used. 

Michael has often heard the word “boy” when his visual attention has been directed 
towards various boys, and frequent simultaneous column activity means that the columns 
activated in response to hearing the word will tend to activate a set of visual columns that 
are an average of the boys Michael was looking at when he heard the word. 

Furthermore, Michael sometimes hears the words “Michael is a boy”. At this point, 
the visual columns indirectly activated by hearing “boy” are active at the same time as 
the auditory columnswithin the word “Michael”. Hence those auditory columns will 
acquire recommendation strengths in favour of activating “boy” visual columns. Finally, 
Michael sometimes looks in a mirror and is told “that’s Michael”, and again the auditory 
receptive fields detected within the word are active at the same time as the visual 
receptive fields detected within the reflection of Michael. 
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The result is that hearing the word “Michael” can result in activation of a population 
of columns that are a kind of average of Michael’s emotions, visual inputs and body 
awareness when his attention was on himself viewed from the “inside”, plus a population 
of columns that are a kind of average of Michael’s sensory experiences of other boys and 
himself viewed from the “outside”. These two self images will generally be activated at 
different phases of frequency modulation from each other and from current sensory 
inputs, etc. so that they will not be confused. The “inside” and “outside” images 
correspond with the “me” and the “I” perspectives (Jaynes 1976), the associations with 
the “me” and “I” words being again created by frequent simultaneous activity of 
columns. 
 
8.6 Imagination 
Suppose that someone is asked “imagine that you are at a party with Bill Clinton”. The 
word “you” drives activation of a self column population as described in the previous 
section. This activation could be at many different levels of column receptive field 
complexity. The words “Bill Clinton” drive activation of a column population on the 
basis of frequent past simultaneous activity with the auditory columns, corresponding 
with mental images that are an average of past visual observations of Bill Clinton on 
television, columns activated in response to stories about Bill Clinton, etc. The word 
“party” will similarly activate a population of columns including, for example, columns 
active during past parties actually attended. 

There will be strong active column populations in the  visual objects and groups of 
objects cortical areas, because self is familiar, Bill Clinton and some actions of Bill 
Clinton are familiar, and parties are familiar. However, the populations in the  groups of 
objects and especially in the  groups of groups, etc. areas will have some weaknesses, 
because no party including self and Bill Clinton has been attended. These weaknesses 
will drive receptive field expansions, which because they are adding conditions 
containing information derived from self, parties and Bill Clinton will be the type of 
expansions that would occur if a party with Bill Clinton present was attended. However, 
there will be little related activity in the cortical areas very close to sensory inputs, so the 
imagining will not be a visual hallucination. The result will therefore be an experience as 
if recalling a party with Bill Clinton. 

Because there has been receptive field expansion, it will be possible to recall 
imagining the event. However, in such a recall the level of activity close to sensory inputs 
will be even less than in recall of a real experience, so in general it will not be confused 
with a real memory. 

Initially, the imagining will be at a relatively high level of receptive field complexity, 
and therefore experienced as a relatively abstract experience. However, the active 
receptive fields will have recommendation strengths to activate other receptive fields on 
the basis of frequent past simultaneous activity. Some simpler receptive fields closer to 
sensory input will have been active in the past at the same time as the higher level 
receptive fields and will therefore be activated. If the degree of activity at the simpler 
level is small, there could be receptive field expansion at this simpler level. Hence a less 
abstract experience can be generated. It is possible that such a process could lead to an 
imagined experience that in retrospect was indistinguishable from a real experience, in 
other words a false memory as observed by Loftus and Pickrell (1995). 
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This model is consistent with the observations that the brain regions activated in 
response to recalling a real event are very similar to the regions activated in response to 
imagining an event that has never happened (Addis et al. 2007). 

The capability to imagine events well outside of actual past experience at anything 
other than a very abstract level is one aspect of what is called creativity. This capability 
will depend on whether some required receptive field expansions are possible. 

The column activations that support detailed imagination are indirect activations of 
simpler receptive fields on the basis of past simultaneous activity with more complex 
receptive fields that are already active. 

For a simpler receptive field to be activated, it must have been active in the past at 
the same time as a significant number of the more complex receptive fields. For an 
imagined experience that is radically different from any past experience, there will be 
relatively few simpler receptive fields that have the required level of temporally 
correlated past activity. Hence the total activity in the cortical area within which the 
columns with the simpler receptive fields are located will be lower than the minimum 
required level. The inputs driving activation in this area are not regular sensory but 
indirect activation inputs. Receptive field expansions could occur to increase the degree 
of area activity, but these expansionswould be new groupings of currently active columns 
at the more complex level. In information terms, this introduces a kind of semantic 
memory based not on actual experience but on imagined experience. 

Receptive field expansions can only occur if at the pyramidal neuron level there are 
adequate provisional conditions. In this case, such provisional conditions would be 
combinations of higher complexity columns supporting indirect activation. Such 
provisional conditions would need to be created during sleep processing. 

There are behavioural benefits and costs to the creation of such provisional 
conditions, which are essentially opposite sides of the same coin. The benefit is the 
ability to imagine circumstances well outside past experience, and therefore, for example, 
the ability to plan for such unusual circumstances. The cost is the introduction of indirect 
activation capabilities that are not supported by actual experience and may be misleading 
for future planning. The degree to which a brain supports such provisional condition 
configuration in the hippocampal system, the anterior temporal cortex and the 
monomodal sensory and polymodal cortices is therefore a compromise which may be 
different for different brains. This compromise defines the degree of creativity which the 
brain will support. 
 
8.7 Planning 
To illustrate planning, suppose that someone is asked “What will you do after the 
concert?” The words “you” and “concert” activate a primary population of auditory 
cortical columns, which in turn indirectly activate a secondary population of visual and 
polymodal columns on many levels of receptive field complexity. Hearing the words 
“what”, “do” and “after” encourages favouring a behaviour sequence recorded in the 
cerebellum. This sequence biases behaviour acceptance in the basal ganglia and thalamus 
in favour of a sequence of different indirect activation behaviours. 

The first step in the sequence biases acceptance of recommendation strengths in the 
secondary population of columns in favour of activation of other columns often active in 
the past after the columns active in the secondary population were active. The effect will 
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be to activate a tertiary population made up of fragments of populations that were active 
during different past “after concert” experiences. 

The next step in the sequence biases acceptance of recommendation strengths in the 
tertiary population in favour of activation of other columns that expanded their receptive 
fields in the past at the same time as the columns active in the tertiary population. This 
step also preserves the activity of the tertiary population, at a different modulation phase 
from the developing quaternary population. The effect is to establish a quaternary 
population approximating to the population active during the event corresponding with 
the fragment with the strongest total recommendation strengths in the tertiary population. 
In other words, this quaternary population corresponds with the past “self after concert” 
experience with the largest active column representation in the tertiary population. 

The next step in the sequence biases acceptance of recommendation strengths in the 
quaternary population in favour of activation of other columns that were often active in 
the past after the columns in the quaternary population. The effect is to establish a 
quinary population approximating to the population active a little later than the 
population active during the “self after concert” past experience. If this population 
contains a lot of columns active in the past at the same time as columns recommending a 
positive reward, the quaternary population becomes the “plan” for after concert. 

If there is little positive reward recommendation in the quinary population, the brain 
can go back to the tertiary population (made up of fragments of different “after concert” 
experiences) and generate another population by activation of other columns that 
expanded their receptive fields in the past at the same time as the columns active in the 
tertiary population. However, in this case, there is a bias placed against recently active 
columns, resulting in the activation of a population corresponding with the past “self after 
concert” experience with the second largest active column representation in the tertiary 
population. A further population is indirectly activated to test reward level after the new 
quaternary population. 

This tertiary to quaternary to quinary process can be repeated until a high reward 
level is found in a quinary population, at which point the final quaternary population 
becomes the “plan”. The final step is to repeat the evolution from the “self after concert” 
population to the final quaternary population. 

Note that for simplicity, more complex sequences involving imaginary scenarios 
developed in a similar way to that described in the previous section could also be 
developed and evaluated for overall final positive reward recommendation strengths. 
Also, in reality there will be intermediate populations approximating to different stages in 
past experiences. Such intermediate populations can be added to the above description 
without difficulty. 

At the end of the concert, a population with a fair amount of overlap with the tertiary 
population generated earlier will develop. Because the populations corresponding with 
the plan will have recently been active shortly after that population, acceptance of 
recommendation strengths in favour of activation on the basis of recent activity shortly 
after the currently active columns will result in development of the column populations 
corresponding with the plan. 

All active column populationswill also have recommendation strengths in favour of 
motor behaviours to get to the next stage in the experience. However, during the concert, 
these recommendation strengths will not be the strongest in total. In the new sensory 
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circumstances corresponding with the end of the concert, these motor behaviours will 
have the predominant total recommendation strengths. 
 
8.8 Stream of Consciousness 
Perhaps the classical definition of human consciousness is the experience of a stream of 
mental images relatively unrelated to current sensory inputs. According to James, the 
experience is of a stage with relatively consistent mental images, separated by periods of 
vague evolution (James 1892). 

In the recommendation architecture, the starting point for this process is some 
population of columns directly activated by the presence of their receptive fields within 
current sensory inputs. Each activated column has a set of recommendation strengths in 
favour of activating other columns on the basis of past temporally correlated activity 
which could be recent activity at the same time, before or after, frequent past activity at 
the same time, before or after, or past receptive field expansion at the same time, before 
or after. 

If such indirect expansions are encouraged, in the absence of any strong total 
recommendation in favour of an externally directed behaviour, a vague secondary 
population will develop. Evolution could then continue through tertiary, quaternary, etc. 
populations, but because of the huge range of indirect activation recommendation 
strengths the cognitive content of the population could become extremely vague. 

However, there is a way to focus a population at any point in time to make it 
potentially more cognitively useful (e.g., for developing a plan as discussed earlier). Any 
population will also have recommendation strengths in favour of speech. If the strongest 
such recommendation is accepted, but only to activate auditory columns often active in 
the past before the columns in the population were active, the experience will be of 
pseudohearing of words that are the closest representation of the population. If now the 
population is replaced with another population generated on the basis of frequent past 
activity at the same time as the auditory columns, the effect will be a population with a 
more sharply focussed cognitive meaning. 

Evolution of the new population could then occur, eventually followed by another 
focussing stage. This model thus accounts for the stream of consciousness experience as 
described by James. For more detail see Coward and Gedeon (2009). 
 
9 Electronic Implementations 
The recommendation architecture memory model is dependent upon a number of 
information mechanisms. One of the most critical is unsupervised organization of 
experience into column condition groups, in such a way that a set of columns can 
discriminate between different circumstances if the difference is behaviourally 
significant. A second mechanism is association of different groups of columns with 
different appropriate behaviours using reward feedback, in such a way that interference 
between new and prior learning is minimized. A third mechanism is support for different 
independent populations of active columns within the same resources, using different 
phases of frequency modulation. A fourth is indirect activation of columns on the basis of 
past temporally correlated activity. A fifth is management of the configuration of 
provisional connectivity for future receptive field expansions using past experience. 
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There have been various electronic implementations of these information 
mechanisms that confirm their capabilities. These implementations have in general used 
three layer columns as illustrated in figure 2, pyramidal neuron receptive fields that can 
expand slightly but not contract or change qualitatively, and have used software 
(Smalltalk and CCC) models for physiological structures. Early implementations (e.g. 
Gedeon et al. 1999; Coward 2001; Ratnayake et al. 2003; Coward et al. 2004) have used 
a relatively simple pyramidal neuron model in which all synapses have the same weight 
and inputs from one sensory state arrive synchronously. Later neuron models (e.g. 
Coward 2004, 2009b) are dynamic, with staged leaky integration across their dendritic 
trees, and use an LTP algorithm for learning. 

These electronic simulations have demonstrated that experience can be organized 
into column modules, where each column detects a gradually expanding similarity space 
that is relatively orthogonal to the spaces detected by other columns, in such a way that 
the column ensemble can discriminate between circumstances with behaviourally 
different implications (Gedeon et al. 1999; Coward 2001, 2009b; Ratnayake et al. 2003). 
The ability to associate partially ambiguous columns with behaviours using reward 
feedback and the capability of imitation to improve the efficiency of rewardbased 
learning (Coward 2005) have been demonstrated, including the management of 
behavioural selection by competition between components corresponding with the 
different behaviours (Coward et al. 2004). It has also been demonstrated that the gradual 
expansion of column portfolios means that the architecture does not experience 
catastrophic interference (Coward et al. 2004). Behaviours have included appropriate 
responses to objects and groups of objects. Simulations have also demonstrated the 
effectiveness of indirect activation mechanisms in supporting activation of pseudovisual 
images in response to verbal inputs and supporting activation of pseudovisual images of 
objects often present in the past at the same time as currently perceived objects (Coward 
2001). The capability of the frequency modulation mechanism to implement attention 
functions at the physiological level has also been demonstrated (Coward 2004). The use 
of a sleep-like process for configuration of provisional conditions has also been 
implemented, with the expected improvement to the behavioural effectiveness of 
recorded conditions (Coward 2001). 
 
10 Conclusions 
The recommendation architecturebased cognitive model establishes the consistent causal 
descriptions of memory and learning phenomena on different levels of detail that are the 
essential core of any scientific understanding. Causal descriptions of memory and 
learning at the psychological level can be precisely mapped into causal descriptions of 
the same phenomena at the level of anatomical structures. The anatomical descriptions 
can be precisely mapped into causal descriptions at the level of neuron algorithms, and 
the neuron level descriptions can be mapped into known physiology. Alternative theories 
do not demonstrate the same degree of consistent multilevel modelling. 

A critical intermediate level of description is at the level of cortical columns, because 
the most complex types of information processing occur in the cortex. However, units of 
cortical information processing cannot be mapped simply into units of cognitive 
processing. The units of information processing in the cortex are detections of similarity 
circumstances (or receptive fields) and expansion of receptive fields when necessary to 
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reach a minimum required level of detection. One such unit of information processing is 
shared by many different cognitive processes. All cognitive processing can be described 
in terms of direct detection of receptive fields, indirect activation of receptive fields on 
the basis of past temporally correlated activity with currently active receptive fields and 
interpretation of receptive field detections as behavioural recommendations, including 
indirect activation recommendations. 

The brain has no a priori definitions of cognitive processes like episodic memory, 
imagining, planning, etc. All the brain has is a set of information processes (or internal 
behaviours) for activating and evolving populations of receptive field detections. At each 
stage the currently active population is interpreted into a predominant behaviour 
recommendation which is then implemented. Learning uses reward feedback both to 
discover sequences of information processes that are behaviourally valuable and to 
associate different circumstances with invocation of different sequences. Different 
sequences supporting different cognitive processes such as episodic memory, semantic 
memory and imagination or planning often use overlapping cortical resources. Electronic 
modelling of the recommendation architecture demonstrates that the information models 
that form the foundation of the description hierarchy support observed memory and 
learning phenomena. 
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